Authors:
S. Amrane Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie

Search for other papers by S. Amrane in
Current site
Google Scholar
PubMed
Close
,
M. Chaalal Laboratoire BIOQUAL, Institut de la Nutrition, de l’Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1, Route de Ain-El-Bey 25000, Constantine, Algérie

Search for other papers by M. Chaalal in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8504-5969
,
S. Bouriche Laboratoire des Matériaux organiques, Département de Génie des Procèdes, Faculté de Technologie, Université de Bejaia, Bejaia 06000, Algérie

Search for other papers by S. Bouriche in
Current site
Google Scholar
PubMed
Close
,
S. Ydjedd Laboratoire de Génie Agro-Alimentaire (GENIAAL), Institut de la Nutrition, de l’Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1, Route de Ain-El-Bey 25000, Constantine, Algérie

Search for other papers by S. Ydjedd in
Current site
Google Scholar
PubMed
Close
,
F. Rezgui Laboratoire des Matériaux organiques, Département de Génie des Procèdes, Faculté de Technologie, Université de Bejaia, Bejaia 06000, Algérie

Search for other papers by F. Rezgui in
Current site
Google Scholar
PubMed
Close
,
N. Amessis-Ouchemoukh Laboratoire de Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie

Search for other papers by N. Amessis-Ouchemoukh in
Current site
Google Scholar
PubMed
Close
, and
S. Ouchemoukh Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie

Search for other papers by S. Ouchemoukh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The aim of this study was to optimise the microencapsulation efficiency of propolis phenolic compounds by double emulsion solvent evaporation technique (W1/O/W2). The solvent/sample ratio and the polymer and surfactant concentration parameters were optimised using response surface methodology (RSM) through Box–Behnken Design (BBD). For each parameter studied, total phenolic content encapsulation efficiency (TPCEE), free radical scavenging activity (DPPH), and ferric reducing antioxidant power (FRAP) were evaluated. The results showed that the optimal parameters were: 31.60 mg mL−1 for sample/solvent ratio, 606.28 mg mL−1 for poly(ε-caprolactone) (PCL) concentrations, and 2.05 g mL−1 for poly(vinyl alcohol) (PVA) concentration. The optimum values obtained were: 84.62% for encapsulation efficiency of phenolic content, 51.89% for DPPH, and 48,733 mg Trolox Equivalent/100 g dry weight for FRAP. The experimental checking of results revealed the validity of elaborated models and their suitability for the prediction of both responses. The developed mathematical models have expressed a high level of significance through RSM optimisation processes for phenolic antioxidants of propolis.

Supplementary Materials

    • Supplemental Material
  • Amrane, S., Chaalal, M., Bouriche, S., Ydjedd, S., Rezgui, F., and Ouchemoukh, S. (2023). Effect of microencapsulation conditions on phenolic compounds and antioxidant activity of propolis using double emulsion solvent evaporation approach. Acta Alimentaria, 52(4): 601611. https://doi.org/10.1556/066.2023.00170.

    • Search Google Scholar
    • Export Citation
  • Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., and Escaleira, L.A. (2008). Response Surface Methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5): 965977.

    • Search Google Scholar
    • Export Citation
  • Bhattarai, N., Li, Z., Gunn, J., Leung, M., Cooper, A., Edmondson, D., Veiseh, O., Chen, M.H., Zhang, Y., Ellenbogen, R.G., and Zhang, M. (2009). Natural synthetic polyblend nanofibers for biomedical applications. Advanced Materials, 21(27): 27922797.

    • Search Google Scholar
    • Export Citation
  • Busch, V.M., Pereyra Gonzalez, A., Segatin, N., Santagapita, P.R., Poklar Ulrih, N., and Buera, M.P. (2017). Propolis encapsulation by spray drying: characterization and stability. LWT – Food Science and Technology, 75: 227235.

    • Search Google Scholar
    • Export Citation
  • Carrio, A., Schwach, G., Coudane, J., and Vert, M. (1995). Preparation and degradation of surfactant-free PLGA microspheres. Journal of Controlled Release, 37: 113121.

    • Search Google Scholar
    • Export Citation
  • Castillo, L.B. and Martinez, Y. (2023). The concentration and type of emulsifier rules the oil/water and water/oil/water emulsion size distribution. Chemical Engineering Communications, 210(11): 20642071.

    • Search Google Scholar
    • Export Citation
  • Chaalal, M., Ydjedd, S., Harkat, A., Namoune, H., and Kati, D.E. (2018). Effect of in vitro gastrointestinal digestion on antioxidant potential of three prickly pear variety extracts. Acta Alimentaria, 47 :333339.

    • Search Google Scholar
    • Export Citation
  • Chouaibi, M., Mejri, J., Rezig, L., Abdelli, K., and Hamdi, S. (2019). Experimental study of quercetin microencapsulation using water-in-oil-in-water (W1/O/W2) double emulsion. Journal of Molecular Liquids, 273: 183191.

    • Search Google Scholar
    • Export Citation
  • Da Silva, F.C., Da Fonseca, C.R., De Alencar, S.M., Thomazini, M., De Carvalho Balieiro, J.C., Pittia, P., and Favaro-Trindade, C.S. (2013).Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum Arabic and OSA starch-based carrier systems. Food and Bioproducts Processing, 91(1): 2836.

    • Search Google Scholar
    • Export Citation
  • Dahdouh, A., Kati, D.E., Bachir-Bey, M., Aksas, A., and Rezgui, F. (2021). Deployment of response surface methodology to optimise microencapsulation of peroxidases from turnip roots (Brassica rapa L.) by double emulsion in PLA polymer. Journal of Food Sciences, 86(5): 18931906.

    • Search Google Scholar
    • Export Citation
  • Durán, N., Marcato, P.D., Buffo, C.M.S., De Azevedo, M.M.M., and Esposito, E. (2007). Poly(ε-caprolactone)/propolis extract: microencapsulation and antibacterial activity evaluation. Pharmazie, 62: 287290.

    • Search Google Scholar
    • Export Citation
  • Hago, E.E. and Li, X. (2013). Interpenetrating polymer network hydrogels based on gelatin and PVA by biocompatible approaches: synthesis and characterization. Advanced Materials Science and Engineering, 2013: 328763.

    • Search Google Scholar
    • Export Citation
  • Hussain, Z., Thu, H.E., Shuid, A.N., Katas, H., and Hussain, F. (2018). Recent advances in polymer-based wound dressings for the treatment of diabetic foot ulcer: an overview of state-of-the-art. Current Drug Targets, 19(5): 527550.

    • Search Google Scholar
    • Export Citation
  • Jansen-Alves, C., Maia, D.S.V., Krumreich, F.D., Crizel-Cardoso, M.M., Fioravante, J.B., Da Silva, W.P., Borges, C.D., and Zambiazi, R.C. (2019). Propolis microparticles produced with pea protein: characterization and evaluation of antioxidant and antimicrobial activities. Food Hydrocolloids, 87: 703711.

    • Search Google Scholar
    • Export Citation
  • Kasote, D.M., Pawar, M.V., Bhatia, R.S., Nandre, V.S., Gundu, S.S., Jagtap, S.D., and Kulkarni, M.V. (2017). HPLC, NMR based chemical profiling and biological characterization of Indian propolis. Fitoterapia, 122: 5260.

    • Search Google Scholar
    • Export Citation
  • Li, X., Min, S., Zhao, X., Lu, Z., and Jin, A. (2014). Optimization of entrapping conditions to improve the release of BMP-2 from PELA carriers by response surface methodology. Biomedical Materials, 10: 015002.

    • Search Google Scholar
    • Export Citation
  • Meng, F.T., Ma, G.H., Qiu, W., and Su, Z.G. (2003). W/O/W double emulsion technique using ethyl acetate as organic solvent: effects of its diffusion rate on the characteristics of microparticles. Journal of Controlled Release, 91(3): 407416.

    • Search Google Scholar
    • Export Citation
  • Pant, K., Thakur, M., Chopra, H.K., and Nanda, V. (2022). Encapsulated bee propolis powder: drying process optimization and physicochemical characterization. LWT – Food Science and Technology, 155: 112956.

    • Search Google Scholar
    • Export Citation
  • Paulo, F., Paula, V., Estevinho, L.M., and Santos, L. (2021). Propolis microencapsulation by double emulsion solvent evaporation approach: comparison of different polymeric matrices and extract to polymer ratio. Food and Bioproducts Processing, 127: 408425.

    • Search Google Scholar
    • Export Citation
  • Pratami, D.K., Mun’im, A., Hermansyah, H., Gozan, M., and Sahlan, M. (2020). Microencapsulation optimization of propolis ethanolic extract from Tetragonula spp using response surface methodology. International Journal of Applied Pharmaceutics, 12(4): 197206.

    • Search Google Scholar
    • Export Citation
  • Rodrigues, M.I. and Iemma, A.F. (2014). Experimental design and process optimization (1st ed.). CRC Press, Boca Raton, 36 pages. https://doi.org/10.1201/b17848.

    • Search Google Scholar
    • Export Citation
  • Woźniak, M., Sip, A., Mrówczynska, L., Broniarczyk, J., Waśkiewicz, A., and Ratajczak, I. (2023). Biological activity and chemical composition of propolis from various regions of Poland. Molecules, 28(1): 141.

    • Search Google Scholar
    • Export Citation
  • Ydjedd, S., Bouriche, S., Lopez-Nicolas, R., Sanchez-Moya, T., Frontela-Saseta, C., Ros-Berruezo, G., Rezgui, F., Louaileche, H., and Kati, D.E. (2017). Effect of in vitro gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity. Journal of Agricultural and Food Chemistry, 65(4): 827835.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2023 0 0 0
Oct 2023 0 0 0
Nov 2023 0 0 0
Dec 2023 0 0 0
Jan 2024 103 13 22
Feb 2024 1068 0 2
Mar 2024 0 0 0