Allium is a plant genus with high medicinal and dietary value, which encompasses commonly used culinary herbs such as scallion, garlic, and onion. In this study, we investigated whether Allium extracts exert protective effects on radiation-induced chromosomal damage in BALB/c mice. The mice were orally administered 200 mg kg−1 Allium extracts (scallion, garlic, and onion) for 6 weeks and exposed to 2 Gy gamma radiation 1 day after the final feeding. Haematological parameters and the number of micronucleated bone marrow polychromatic erythrocytes (MnPCEs) were evaluated. Additionally, we analysed the effects of Allium extracts on inflammasome activation in lipopolysaccharide-primed murine bone marrow-derived macrophages. The Allium extracts increased the numbers of peripheral white blood cells, lymphocytes, neutrophils, and red blood cells; significantly decreased the number of MnPCEs; and suppressed the maturation of interleukin-1β by blocking activation of the NLRP3 and AIM2 inflammasomes.
In conclusion, Allium extracts protected the hematopoietic function of bone marrow, reduced radiation-induced formation of micronuclei, and suppressed activation of the NLRP3 and AIM2 inflammasomes. Further research is needed to explore the molecular mechanisms of these effects of Allium.
Azzam, E.I., Jay-Gerin, J.P., and Pain, D. (2012). Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Letters, 327(1–2): 48–60, https://doi.org/10.1016/j.canlet.2011.12.012.
Bala, M., Shetty, S.S., Sangwan, R.S., Bhandary, S.K., Roopashree, P.G., Suhasini, P.C., and Kumari, N.S. (2022). Ganoderma lucidum mitigates gamma radiation-induced oxidative stress in Swiss albino mice. Journal of King Saud University - Science, 34(6): 102156, https://doi.org/10.1016/j.jksus.2022.102156.
Cheng, H., Chen, L., Huang, M., Hou, J., Chen, Z., and Yang, X. (2022). Hunting down NLRP3 inflammasome: an executioner of radiation-induced injury. Frontiers in Immunology, 13: 967989, https://doi.org/10.3389/fimmu.2022.967989.
de Zoete, M.R., Palm, N.W., Zhu, S., and Flavell, R.A. (2014). Inflammasomes. Cold Spring Harbor Perspectives in Biology, 6(12): a016287, https://doi.org/10.1101/cshperspect.a016287.
Fischer, N., Seo, E.J., and Efferth, T. (2018). Prevention from radiation damage by natural products. Phytomedicine, 47: 192–200, https://doi.org/10.1016/j.phymed.2017.11.005.
Fu, Y., Wang, Y., Du, L., Xu, C., Cao, J., Fan, T., Liu, J., Su, X., Fan, S., Liu, Q., and Fan, F. (2013). Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation. International Journal of Molecular Sciences, 14(7): 14105–14118, https://doi.org/10.3390/ijms140714105.
Ge, C., Liang, Y., Zhang, Y., Su, F., Chen, L., Ma, F., Ding, K., Zhu, J., Zheng, X., and Fu, H. (2021). Plasma proteins as biodosimetric markers of low-dose radiation in mice. Dose Response, 19(2): 15593258211016257, https://doi.org/10.1177/15593258211016257.
Han, C., Godfrey, V., Liu, Z., Han, Y., Liu, L., Peng, H., Weichselbaum, R.R., Zaki, H., and Fu, Y.X. (2021). The AIM2 and NLRP3 inflammasomes trigger IL-1-mediated antitumor effects during radiation. Science Immunology, 6(59): eabc6998, https://doi.org/10.1126/sciimmunol.abc6998.
Hekim, N., Cetin, Z., Nikitaki, Z., Cort, A., and Saygili, E.I. (2015). Radiation triggering immune response and inflammation. Cancer Letters, 368(2): 156–163, https://doi.org/10.1016/j.canlet.2015.04.016.
Hu, B., Jin, C., Li, H.B., Tong, J., Ouyang, X., Cetinbas, N.M., Zhu, S., Strowig, T., Lam, F.C., Zhao, C., Henao-Mejia, J., Yilmaz, O., Fitzgerald, K.A., Eisenbarth, S.C., Elinav, E., and Flavell, R.A. (2016). The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science, 354(6313): 765–768, https://doi.org/10.1126/science.aaf7532.
Hung, S.J., Tang, S.C., Liao, P.Y., Ge, J.S., Hsiao, Y.P., and Yang, J.H. (2017). Photoprotective potential of glycolic acid by reducing NLRC4 and AIM2 Inflammasome complex proteins in UVB radiation-induced normal human epidermal keratinocytes and mice. DNA and Cell Biology, 36(2): 177–187, https://doi.org/10.1089/dna.2016.3471.
Kesavardhana, S. and Kanneganti, T.D. (2017). Mechanisms governing inflammasome activation, assembly and pyroptosis induction. International Immunology, 29(5): 201–210, https://doi.org/10.1093/intimm/dxx018.
Kim, J.H., Li, L., Park, D.H., Lee, I.W., Ham, N., Kim, H.S., Kim, Y.J., Shim, J., Kwon, S.W., and Lee, M.J. (2019). Inhibitory effects of Cheonggukjang extracts on radiation-induced micronucleus formation and inflammasome activation. International Journal of Radiation Research, 17(1): 57–65, https://doi.org/10.18869/acadpub.ijrr.17.1.57.
Knasmuller, S., de Martin, R., Domjan, G., and Szakmary, A. (1989). Studies on the antimutagenic activities of garlic extract. Environmental and Molecular Mutagenesis, 13(4): 357–365, https://doi.org/10.1002/em.2850130413.
Korystov, Y.N., Shaposhnikova, V.V., Korystova, A.F., and Emel'yanov, M.O. (2007). Detection of reactive oxygen species induced by radiation in cells using the dichlorofluorescein assay. Radiation Research, 168(2): 226–232, https://doi.org/10.1667/RR0925.1.
Lee, J.B., Miyake, S., Umetsu, R., Hayashi, K., Chijimatsu, T., and Hayashi, T. (2012). Anti-influenza A virus effects of fructan from Welsh onion (Allium fistulosum L.). Food Chemistry, 134(4): 2164–2168, https://doi.org/10.1016/j.foodchem.2012.04.016.
Li, L., Kim, H.S., Kwon, S.W., and Lee, M.J. (2022). Inhibitory effects of saeu-jeot extract on NLRP3 inflammasome activation and radiation-induced micronucleus formation. Food Science & Nutrition, 10(6): 1921–1927, https://doi.org/10.1002/fsn3.2808.
Licandro, G., Khor, H.L., Beretta, O., Lai, J., Derks, H., Laudisi, F., Conforti-Andreoni, C., Qian, H.L., Teng, G.G., Ricciardi-Castagnoli, P., and Mortellaro, A. (2013). The NLRP3 inflammasome affects DNA damage responses after oxidative and genotoxic stress in dendritic cells. European Journal of Immunology, 43(8): 2126–2137, https://doi.org/10.1002/eji.201242918.
Liu, B., Li, X., Yu, H., Shi, X., Zhou, Y., Alvarez, S., Naldrett, M.J., Kachman, S.D., Ro, S.H., Sun, X., Chung, S., Jing, L., and Yu, J. (2021). Therapeutic potential of garlic chive-derived vesicle-like nanoparticles in NLRP3 inflammasome-mediated inflammatory diseases. Theranostics, 11(19): 9311–9330, https://doi.org/10.7150/thno.60265.
Schafer, G. and Kaschula, C.H. (2014). The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anti-cancer Agents in Medicinal Chemistry, 14(2): 233–240, https://doi.org/10.2174/18715206113136660370.
Singh, S.P., Abraham, S.K., and Kesavan, P.C. (1996). Radioprotection of mice following garlic pretreatment. The British Journal of Cancer, Supplement, 27: S102–S104.
Stoecklein, V.M., Osuka, A., Ishikawa, S., Lederer, M.R., Wanke-Jellinek, L., and Lederer, J.A. (2015). Radiation exposure induces inflammasome pathway activation in immune cells. The Journal of Immunology, 194(3): 1178–1189, https://doi.org/10.4049/jimmunol.1303051.
Sung, Y.Y., Yoon, T., Kim, S.J., Yang, W.K., and Kim, H.K. (2011). Anti-obesity activity of Allium fistulosum L. extract by down-regulation of the expression of lipogenic genes in high-fat diet-induced obese mice. Molecular Medicine Reports, 4(3): 431–435, https://doi.org/10.3892/mmr.2011.451.
Wu, D., Han, R., Deng, S., Liu, T., Zhang, T., Xie, H., and Xu, Y. (2018). Protective effects of flagellin A N/C against radiation-induced NLR pyrin domain containing 3 inflammasome-dependent pyroptosis in intestinal cells. International Journal of Radiation Oncology, Biology, Physics, 101(1): 107–117, https://doi.org/10.1016/j.ijrobp.2018.01.035.
Zhao, C., Wang, Z., Cui, R., Su, L., Sun, X., Borras-Hidalgo, O., Li, K., Wei, J., Yue, Q., and Zhao, L. (2021). Effects of nitrogen application on phytochemical component levels and anticancer and antioxidant activities of Allium fistulosum. PeerJ, 9: e11706, https://doi.org/10.7717/peerj.11706.