Authors:
X.H. Yu School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China

Search for other papers by X.H. Yu in
Current site
Google Scholar
PubMed
Close
,
Y.T. Zhang School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China

Search for other papers by Y.T. Zhang in
Current site
Google Scholar
PubMed
Close
,
J.Y. Duan School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China

Search for other papers by J.Y. Duan in
Current site
Google Scholar
PubMed
Close
,
X.Y. Su School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China

Search for other papers by X.Y. Su in
Current site
Google Scholar
PubMed
Close
,
S. Yin School of You Pei, Yancheng Institute of Technology, Yancheng 224051, China

Search for other papers by S. Yin in
Current site
Google Scholar
PubMed
Close
,
X.M. Wu School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China

Search for other papers by X.M. Wu in
Current site
Google Scholar
PubMed
Close
,
X.D. Peng School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China

Search for other papers by X.D. Peng in
Current site
Google Scholar
PubMed
Close
,
K.Q. Li School of Pharmacy, Nanjing University of Chinese Medicine, Taizhou 225300, China

Search for other papers by K.Q. Li in
Current site
Google Scholar
PubMed
Close
,
W. Li School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China

Search for other papers by W. Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8341-4441
, and
X.D. Chen School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China

Search for other papers by X.D. Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6202-0582
Restricted access

Abstract

Ferulic acid (FA) is recognised for its antioxidant and anti-inflammatory properties. However, the application is limited due to its poor solubility. Glycerol esterification improves the hydrophilicity of organic phenolic acids. The results showed that feruloyl glycerol (FG) was successfully synthesised with a molecular weight of 268. During the simulated intestinal digestion, free FA was released from FG under the action of pancreatin. Consequently, FA and FG were present in mixed micelles, and the proportion of free FA positively correlated with pancreatin activity, which improved the bioaccessibility of FA. During the colonic fermentation phase, we observed that FA could also be released from FG through the action of gut microbiota, but the content of FG in digestive residue was low, indicating that most of the FG was hydrolysed in the small intestine. This experiment helps to understand the absorption pathways and fate of FG during digestion and provides guidance for the utilisation of insoluble organic phenolic acids.

  • Anson, N.M., Selinheimo, E., Havenaar, R., Aura, A.M., Mattila, I., Lehtinen, P., Bast, A., Poutanen, K., and Haenen, G.R. (2009). Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. Journal of Agricultural and Food Chemistry, 57(14): 61486155.

    • Search Google Scholar
    • Export Citation
  • Bento-Silva, A., Vaz Patto, M.C., and do Rosario Bronze, M. (2018). Relevance, structure and analysis of ferulic acid in maize cell walls. Food Chemistry, 246: 360378.

    • Search Google Scholar
    • Export Citation
  • Chaalal, M., Ydjedd, S., Chemache, L., López-Nicolás, R., Sánchez-Moya, T., Frontela-Saseta, C., Ros-Berruezo, G., and Kati, D.E. (2023). Evaluation of the antimicrobial potential of digested and undigested carob phenolic extracts: mpact on selected gut microbiota. Acta Alimentaria, 52(4): 612622.

    • Search Google Scholar
    • Export Citation
  • Chait, Y.A., Gunenc, A., Bendali, F., and Hosseinian, F. (2020). Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: ioaccessibility and bioactivity. Food Science and Technology, 117: 108623.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Teng, W., Wang, J., Wang, Y., Zhang, Y., and Cao, J. (2024). The intestinal delivery systems of ferulic acid: bsorption, metabolism, influencing factors, and potential applications. Food Frontiers, 5(3): 11261144.

    • Search Google Scholar
    • Export Citation
  • Chitchumroonchokchai, C. and Failla, M.L. (2006). Hydrolysis of zeaxanthin esters by carboxyl ester lipase during digestion facilitates micellarization and uptake of the xanthophyll by Caco-2 human intestinal cells. Journal of Nutrition, 136(3): 588594.

    • Search Google Scholar
    • Export Citation
  • Drawbridge, P.C., Apea‐Bah, F., and Beta, T. (2023). Bioaccessibility of ferulic acid in hulless barley varieties at stages of simulated in vitro digestion. Cereal Chemistry, 100(4): 954965.

    • Search Google Scholar
    • Export Citation
  • Gong, L., Wang, H., Wang, T., Liu, Y., Wang, J., and Sun, B. (2019). Feruloylated oligosaccharides modulate the gut microbiota in vitro via the combined actions of oligosaccharides and ferulic acid. Journal of Functional Foods, 60: 103453.

    • Search Google Scholar
    • Export Citation
  • Holser, R.A., Mitchell, T.R., Harry‐O’kuru, R.E., Vaughn, S.F., Walter, E., and Himmelsbach, D. (2008). Preparation and characterization of 4‐methoxy cinnamoyl glycerol. Journal of the American Oil Chemists' Society, 85(4): 347351.

    • Search Google Scholar
    • Export Citation
  • Hu, X.P., Yin, F.W., Zhou, D.Y., Xie, H.K., Zhu, B.W., Ma, X.C., Tian, X.G., Wang, C., and Shahidi, F. (2019). Stability of resveratrol esters with caprylic acid during simulated in vitro gastrointestinal digestion. Food Chemistry, 276: 675679.

    • Search Google Scholar
    • Export Citation
  • Hu, Y.Y., Ma, C.G., Zhou, T.L., Bai, G., Guo, S.J., and Chen, X.W. (2022). Enzymatic synthesis of hydrophilic phytosterol polyol esters and assessment of their bioaccessibility and uptake using an in vitro digestion/Caco-2 cell model. Food Chemistry, 370: 131324.

    • Search Google Scholar
    • Export Citation
  • Kumar, M., Kaushik, D., Shubham, S., Kumar, A., Kumar, V., Oz, E., Brennan, C., Zeng, M., Proestos, C., Cadirci, K., Bayrak, M., Elobeid, T., Karav, S., and Oz, F. (2025). Ferulic acid: extraction, estimation, bioactivity and applications for human health and food. Journal of the Science of Food and Agriculture, https://doi.org/10.1002/jsfa.13931.

    • Search Google Scholar
    • Export Citation
  • Lee, T.K., Kang, H.R., and Kim, K.H. (2018). A new feruloyl glyceride from the roots of Asian rice (Oryza sativa). Revista Brasileira de Farmacognosia, 28(4): 421424.

    • Search Google Scholar
    • Export Citation
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., Marze, S., McClements, D.J., Menard, O., Recio, I., Santos, C.N., Singh, R.P., Vegarud, G.E., Wickham, M.S., Weitschies, W., and Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food – an international consensus. Food & Function, 5(6): 11131124.

    • Search Google Scholar
    • Export Citation
  • Ozkan, K., Karadag, A., and Sagdic, O. (2022). The effects of drying and fermentation on the bioaccessibility of phenolics and antioxidant capacity of Thymus vulgaris leaves. Acta Alimentaria, 51(2): 155165.

    • Search Google Scholar
    • Export Citation
  • Sankar, K. and Achary, A. (2017). Synthesis of feruloyl ester using Bacillus subtilis AKL 13 lipase immobilized on Celite® 545. Food Technology and Biotechnology, 55(4): 542552.

    • Search Google Scholar
    • Export Citation
  • Thapliyal, S., Singh, T., Handu, S., Bisht, M., Kumari, P., Arya, P., Srivastava, P., and Gandham, R. (2021). A review on potential footprints of ferulic acid for treatment of neurological disorders. Neurochemical Research, 46(5): 10431057.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Chen, X., Sun, S., and Xu, R. (2021). Enhancement of the hydrophilic feruloyl glycerol synthesis using A-35 as a catalyst and its functional characteristics. Food & Function, 12(20): 97639772.

    • Search Google Scholar
    • Export Citation
  • Wen, X., Hempel, J., Schweiggert, R.M., Wang, Y., Ni, Y., and Carle, R. (2018). Screening of critical factors influencing the efficient hydrolysis of zeaxanthin dipalmitate in an adapted in vitro-digestion model. Food Chemistry, 257: 3643.

    • Search Google Scholar
    • Export Citation
  • Xavier, A.A.O., Mercadante, A.Z., Garrido-Fernández, J., and Pérez-Gálvez, A. (2014). Fat content affects bioaccessibility and efficiency of enzymatic hydrolysis of lutein esters added to milk and yogurt. Food Research International, 65: 171176.

    • Search Google Scholar
    • Export Citation
  • Xu, Y.H., Li, T., Yang, W.L., Sun, M.Y., An, R.Z., and Du, W.M. (2021). The ratio of xylooligosaccharide to ferulic acid affects faecal ferulic acid content, short chain fatty acid output, and gut stress. Acta Alimentaria, 50(4): 494504.

    • Search Google Scholar
    • Export Citation
  • Yin, F.W., Hu, X.P., Zhou, D.Y., Ma, X.C., Tian, X.G., Huo, X.K., Rakariyatham, K., Shahidi, F., and Zhu, B.W. (2018). Evaluation of the stability of tyrosol esters during in vitro gastrointestinal digestion. Food & Function, 9(7): 36103616.

    • Search Google Scholar
    • Export Citation
  • Yu, X., Wang, M., Wang, D., Wei, M., Li, F., Lyu, Y., and Liu, J. (2024). Biosynthesis of feruloyl glycerol from ferulic acid and glycerol through a two-enzyme cascade reaction. Applied Biochemistry and Biotechnology, 196(12): 85728586.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z. and Moghadasian, M.H. (2008). Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: review. Food Chemistry, 109(4): 691702.

    • Search Google Scholar
    • Export Citation
  • Zou, Y., Qian, Y., Rong, X., Cao, K., McClements, D.J., and Hu, K. (2021). Encapsulation of quercetin in biopolymer-coated zein nanoparticles: ormation, stability, antioxidant capacity, and bioaccessibility. Food Hydrocolloids, 120: 106980.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: András Salgó, Budapest University of Technology and Economics, Budapest, Hungary

Co-ordinating Editor(s) Marianna Tóth-Markus, Budapest, Hungary

Co-editor(s): A. Halász, Budapest, Hungary

       Editorial Board

  • László Abrankó, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Tamás Antal, University of Nyíregyháza, Nyíregyháza, Hungary
  • Diána Bánáti, University of Szeged, Szeged, Hungary
  • József Baranyi, Institute of Food Research, Norwich, UK
  • Ildikó Bata-Vidács, Eszterházy Károly Catholic University, Eger, Hungary
  • Ferenc Békés, FBFD PTY LTD, Sydney, NSW Australia
  • György Biró, Budapest, Hungary
  • Anna Blázovics, Semmelweis University, Budapest, Hungary
  • Francesco Capozzi, University of Bologna, Bologna, Italy
  • Marina Carcea, Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy
  • Zsuzsanna Cserhalmi, Budapest, Hungary
  • Marco Dalla Rosa, University of Bologna, Bologna, Italy
  • István Dalmadi, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Katarina Demnerova, University of Chemistry and Technology, Prague, Czech Republic
  • Mária Dobozi King, Texas A&M University, Texas, USA
  • Muying Du, Southwest University in Chongqing, Chongqing, China
  • Sedef Nehir El, Ege University, Izmir, Turkey
  • Søren Balling Engelsen, University of Copenhagen, Copenhagen, Denmark
  • Éva Gelencsér, Budapest, Hungary
  • Vicente Manuel Gómez-López, Universidad Católica San Antonio de Murcia, Murcia, Spain
  • Jovica Hardi, University of Osijek, Osijek, Croatia
  • Hongju He, Henan Institute of Science and Technology, Xinxiang, China
  • Károly Héberger, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
  • Nebojsa Ilić, University of Novi Sad, Novi Sad, Serbia
  • Dietrich Knorr, Technische Universität Berlin, Berlin, Germany
  • Hamit Köksel, Hacettepe University, Ankara, Turkey
  • Katia Liburdi, Tuscia University, Viterbo, Italy
  • Meinolf Lindhauer, Max Rubner Institute, Detmold, Germany
  • Min-Tze Liong, Universiti Sains Malaysia, Penang, Malaysia
  • Marena Manley, Stellenbosch University, Stellenbosch, South Africa
  • Miklós Mézes, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
  • Áron Németh, Budapest University of Technology and Economics, Budapest, Hungary
  • Perry Ng, Michigan State University,  Michigan, USA
  • Quang Duc Nguyen, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
  • Laura Nyström, ETH Zürich, Switzerland
  • Lola Perez, University of Cordoba, Cordoba, Spain
  • Vieno Piironen, University of Helsinki, Finland
  • Alessandra Pino, University of Catania, Catania, Italy
  • Mojmir Rychtera, University of Chemistry and Technology, Prague, Czech Republic
  • Katharina Scherf, Technical University, Munich, Germany
  • Regine Schönlechner, University of Natural Resources and Life Sciences, Vienna, Austria
  • Arun Kumar Sharma, Department of Atomic Energy, Delhi, India
  • András Szarka, Budapest University of Technology and Economics, Budapest, Hungary
  • Mária Szeitzné Szabó, Budapest, Hungary
  • Sándor Tömösközi, Budapest University of Technology and Economics, Budapest, Hungary
  • László Varga, Széchenyi István University, Mosonmagyaróvár, Hungary
  • Rimantas Venskutonis, Kaunas University of Technology, Kaunas, Lithuania
  • Barbara Wróblewska, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.226
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0,8
Rank by Impact Factor Q4 (Food Science & Technology)
Journal Citation Indicator 0.19
Scopus  
CiteScore 1.8
CiteScore rank Q3 (Food Science)
SNIP 0.323
Scimago  
SJR index 0.235
SJR Q rank Q3

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 450 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 880 EUR / 968 USD
Print + online subscription: 1016 EUR / 1116 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)