Metabolomics, unlike traditional methods for analysing the nutritional content of fruits and vegetables, enables the detection of low-molecular-weight metabolites (<1 kDa), including carnitine and its derivatives, acylcarnitines. These compounds are integral to energy metabolism, facilitating mitochondrial transport of long-chain fatty acids, cytosolic export of short-chain fatty acids, stabilisation of the mitochondrial coenzyme A to acetyl-CoA ratio, preservation of membrane integrity, and reduction of lactate production. While carnitine profiles in various fruits and vegetables have been extensively studied, data on its presence in pomegranates remains limited. This study aims to elucidate the carnitine composition in five pomegranate cultivars using LC-MS/MS analysis. Results indicate significantly higher concentrations of free carnitine and acetylcarnitine in the Suruç variety, alongside other notable acylcarnitines, including propionylcarnitine, hydroxyisovalerylcarnitine, adipoylcarnitine, and oleylcarnitine. These findings position pomegranate as a promising dietary component with potential health benefits attributed to its carnitine content.
Belay, B., Esteban-Cruciani, N., Walsh, C.A., and Kaskel, F.J. (2006). The use of levo-carnitine in children with renal disease: a review and a call for future studies. Pediatric Nephrology, 21(3): 308–317, https://doi.org/10.1007/s00467-005-2085-4.
Bene, J., Komlósi, K., Havasi, V., Talián, G., Gasztonyi, B., Horváth, K., Mózsik, G., Hunyady, B., Melegh, B., and Figler, M. (2006). Changes of plasma fasting carnitine ester profile in patients with ulcerative colitis. World Journal of Gastroenterology, 12(1): 110–113, https://doi.org/10.3748/wjg.v12.i1.110.
Binici, I., Akbay, H.İ., Huyut, Z., Alp, H.H., Karsen, H., Koyuncu, I., Gonel, A., Akmeşe, Ş., and Çelik, H. (2023). Determination of serum differential carnitine ester levels in HIV(+) patients: a cross-sectional study. Current HIV Research, 21(1): 18–26, https://doi.org/10.2174/1570162X21666221219141016.
Borum, P.R. (2020). Carnitine. In: Marriott, B., Birt, D.F., Stalling, V., and Yates, A. (Eds.), Present knowledge in nutrition, 11th ed. Academic Press, pp. 551–559.
Demarquoy, J., Georges, B., Rigault, C., Royer, M.C., Clairet, A., Soty, M., Lekounoungou, S., and Le Borgne, F. (2004). Radioisotopic determination of L-carnitine content in foods commonly eaten in Western countries. Food Chemistry, 86(1): 137–142, https://doi.org/10.1016/j.foodchem.2003.09.023.
Engel, A.G. and Rebouche, C.J. (1984). Carnitine metabolism and inborn errors. Journal of Inherited Metabolic Disease, 7(Suppl 1): 38–43, https://doi.org/10.1007/BF03047372.
Fielding, R., Riede, L., Lugo, J.P., and Bellamine, A. (2018). L-carnitine supplementation in recovery after exercise. Nutrients, 10(3): 349, https://doi.org/10.3390/nu10030349.
Gill, B., Indyk, H., Kobayashi, T., McGrail, I., and Woollard, D. (2020). Comparison of LC-MS/MS and enzymatic methods for the determination of total choline and total carnitine in infant formula and milk products. Journal of AOAC International, 103(5): 1293–1300, https://doi.org/10.1093/jaoacint/qsaa060.
Haarhuis, J., Day-Walsh, P., Shehata, E., Nemeckova, B., Saha, S., and Kroon, P. (2023). A pomegranate extract inhibits the conversion of dietary L-carnitine to prothrombotic trimethylamine (TMA) by the gut microbiota. Proceedings of the Nutrition Society, 82: E343, https://doi.org/10.1017/S0029665123004421.
Hassaneen, N.H., Hemeda, S.A., El Nahas, A.F., Fadl, S.E., and El-Diasty, E.M. (2023). Ameliorative effects of camel milk and silymarin upon aflatoxin B1 induced hepatic injury in rats. Scientific Reports, 13(1): 15092, https://doi.org/10.1038/s41598-023-41586-4.
Koozehchian, M.S., Daneshfar, A., Fallah, E., Agha-Alinejad, H., Samadi, M., Kaviani, M., Kaveh, B.M., Jung, Y.P., Sablouei, M.H., Moradi, N., Earnest, C.P., Chandler, T.J., and Kreider, R.B. (2018). Effects of nine weeks L-carnitine supplementation on exercise performance, anaerobic power, and exercise-induced oxidative stress in resistance-trained males. Journal of Exercise Nutrition & Biochemistry, 22(4): 7–19, https://doi.org/10.20463/jenb.2018.0026.
Karlic, H. and Lohninger, A. (2004). Supplementation of L-carnitine in athletes: does it make sense? Nutrition, 20(7–8): 709–715, https://doi.org/10.1016/j.nut.2004.04.003.
Knüttel-Gustavsen, S. and Harmeyer, J. (2007). The determination of L-carnitine in several food samples. Food Chemistry, 105(2): 793–804, https://doi.org/10.1016/j.foodchem.2007.01.058.
Lehmann, R., Zhao, X., Weigert, C., Simon, P., Fehrenbach, E., Fritsche, J., Machann, J., Schick, F., Wang, J., Hoene, M., Schleicher, E.D., Häring, H.U., Xu, G., and Niess, A.M. (2010). Medium chain acylcarnitines dominate the metabolite pattern in humans under moderate intensity exercise and support lipid oxidation. Plos One, 5(7): e11519, https://doi.org/10.1371/journal.pone.0011519.
Maeda, Y., Ito, T., Ohmi, H., Yokoi, K., Nakajima, Y., Ueta, A., Kurono, Y., Togari, H., and Sugiyama, N. (2008). Determination of 3-hydroxyisovalerylcarnitine and other acylcarnitine levels using liquid chromatography-tandem mass spectrometry in serum and urine of a patient with multiple carboxylase deficiency. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 870(2): 154–159, https://doi.org/10.1016/j.jchromb.2007.11.037.
Nussinovitch, U. (Ed.) (2017). The heart in rheumatic, autoimmune, and inflammatory diseases: pathophysiology, clinical aspects, and therapeutic approaches, 1st ed. Academic Press (Elsevier), pp. 832, ISBN: 978-0-12-803267-1.
Pekala, J., Patkowska-Sokoła, B., Bodkowski, R., Jamroz, D., Nowakowski, P., Lochyński, S., and Librowski, T. (2011). L-carnitine – metabolic functions and meaning in human life. Current Drug Metabolism, 12(7): 667–678, https://doi.org/10.2174/138920011796504536.
Pooyandjoo, M., Nouhi, M., Shab-Bidar, S., Djafarian, K., and Olyaeemanesh, A. (2016). The effect of (L-) carnitine on weight loss in adults: a systematic review and meta-analysis of randomised controlled trials. Obesity Reviews, 17(10): 970–976, https://doi.org/10.1111/obr.12436.
Rebouche, C.J. (2014). Carnitine. In: Ross, A.C., Caballero, B., Cousins, R.J., and Tucker, K.L. (Eds.), Modern nutrition in health and disease, 11th ed.. Lippincott Williams and Wilkins, Baltimore, pp. 252–253.
Sharma, P., McClees, S.F., and Afaq, F. (2017). Pomegranate for prevention and treatment of cancer: an update. Molecules, 22(1): 177, https://doi.org/10.3390/molecules22010177.
Shibata, N., Hasegawa, Y., Yamada, K., Kobayashi, H., Purevsuren, J., Yang, Y., Dung, V.C., Khanh, N.N., Verma, I.C., Bijarnia-Mahay, S., Lee, D.H., Niu, D.M., Hoffmann, G.F., Shigematsu, Y., Fukao, T., Fukuda, S., Taketani, T., and Yamaguchi, S. (2018). Diversity in the incidence and spectrum of organic acidemias, fatty acid oxidation disorders, and amino acid disorders in Asian countries: selective screening vs. expanded newborn screening. Molecular Genetics and Metabolism Reports, 16: 5–10, https://doi.org/10.1016/j.ymgmr.2018.05.003.
Yang, W., Wang, Y., Zhang, C., Huang, Y., Yu, J., Shi, L., Zhang, P., Yin, Y., Li, R., and Tao, K. (2022). Maresin1 protects against ferroptosis-induced liver injury through ROS inhibition and Nrf2/HO-1/GPX4 activation. Frontiers in Pharmacology, 13: 865689, https://doi.org/10.3389/fphar.2022.865689.
Yousuf, B., Gul, K., Wani, A.A., and Singh, P. (2016). Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Critical Reviews in Food Science and Nutrition, 56(13): 2223–2230, https://doi.org/10.1080/10408398.2013.805316.
Zhang, L., Wu, Q., Wang, N., Zhang, L., Yang, X., and Zhao, Y. (2023). Quercetin inhibits hepatotoxic effects by reducing trimethylamine-N-oxide formation in C57BL/6J mice fed with a high L-carnitine diet. Food & Function, 14: 206–214, https://doi.org/10.1039/D2FO01909D.