View More View Less
  • 1 Research Group of Geophysics and Environmental Physics of the Hungarian Academy of Sciences, Loránd Eötvös University H-1117, Budapest, Pázmány Péter sétány 1/c., Hungary
  • 2 Planetary Geodynamics Laboratory Goddard Space Flight Center/NASA Greenbelt Maryland, USA
  • 3 MOL Hungarian Oil and Gas Co. H-1039 Budapest, Batthyány u. 45, Hungary
  • 4 UMBC/GEST at Planetary Geodynamics Laboratory Goddard Space Flight Center/NASA Greenbelt Maryland, USA
  • 5 Geodaesical and Cartographical Co. H-1149 Budapest, Bosnyák tér 5., Hungary
  • 6 Institute of Theoretical Geodesy, University of Bonn Nussallee 17, D-53115 Bonn, Germany
Restricted access

To solve a geophysical inverse problem means applying measurements to determine the parameters of the selected model. The inverse problem is formulated as the Bayesian inference. The Gaussian probability density functions are applied in the Bayes's equation. The CHAMP satellite gravity data are determined at the altitude of 400 km altitude over the South part of the Pannonian Basin. The model of interpretation is the right vertical cylinder. The parameters of the model are obtained from the minimum problem solved by the Simplex method.

  • Bayes T 1763: Philosophical Transactions of the Royal Society, 53, 370--418.

    () 53 Philosophical Transactions of the Royal Society : 370 -418.

  • Duijndam A J W 1988b: Geophys. Prospect., 36, 899--918.

    () 36 Geophys. Prospect. : 899 -918.

  • Duijndam A J W 1988a: Geophys. Prospect., 36, 878--898.

    () 36 Geophys. Prospect. : 878 -898.

  • Dean W C 1958: Geophysics, 23, 97--127.

    () 23 Geophysics : 97 -127.

  • Box G E P, Tiao G C 1973: Bayesian Inference in Statistical Analysis. Addison-Wesley Publishing Company

    Bayesian Inference in Statistical Analysis , ().

  • Ilk K H, Mayer-Gürr T, Feuchtinger M 2005: In: Earth Observation with CHAMP. Ch Reigber, H Lühr, P Schwintzer, J Wickert eds, Springer Berlin, Heidelberg, New York, 127--132.

    Earth Observation with CHAMP , () 127 -132.

  • Jefferys W H, Berger J O 1992: Am. Sci., 80, 64--72.

    () 80 Am. Sci. : 64 -72.

  • Marović M, Djoković I, Pešić L, Radovanović S, Toljić M, Gerzina N 2002: EGU Stephan Mueller Special Publication Series, 3, 277--295.

    () 3 EGU Stephan Mueller Special Publication Series : 277 -295.

  • Mayer-Gürr T 2004: Written communication. Institute of Theoretical Geodesy, University of Bonn

    Written communication , ().

  • Mayer-Gürr T, Ilk K H, Feuchtinger M 2005: ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period. J. Geodesy (in press)

    'ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period ' () J. Geodesy .

    • Search Google Scholar
  • Menke W 1984: Geophysical Data Analysis: Discrete Inverse Theory. Academic Press Inc. International Geophysical Series, Vol. 45.

    Geophysical Data Analysis: Discrete Inverse Theory , ().

  • Nabighian M N 1962: Pure and Appl. Geophys., 53, 45--51.

    () 53 Pure and Appl. Geophys. : 45 -51.

  • Nagy D 1963: Pure and Appl. Geophys., 62, 5--12.

    () 62 Pure and Appl. Geophys. : 5 -12.

  • Nelder J A, Mead R 1965: The Computer J., 7, 308--313.

    () 7 The Computer J. : 308 -313.

  • Reigber Ch, Schwintzer P, Neumayer K-H, Barthelmes F, König R, Förste Ch, Balmino G, Biancale R, Lemoine J-M, Loyer S, Bruinma S, Perosanz F, Fayard T 2003: Adv. Space Res., 31, 1883--1888.

    () 31 Adv. Space Res. : 1883 -1888.

  • Scales J A, Sneider R 1997: Geophysics, 62, 1045--1046.

    () 62 Geophysics : 1045 -1046.

  • Sen M, Stofa P L 1995: Global Optimization Methods in Geophysical Inversion. Elsevier Science Publishers

    Global Optimization Methods in Geophysical Inversion , ().

  • Singh S K 1977: Geophys. J. R. astr. Soc., 50, 243--246.

    () 50 Geophys. J. R. astr. Soc. : 243 -246.

  • Tarantola A 1987: Inverse Problem Theory, Methods for Data Fitting and Model Parameter Estimation. Elsevier Science Publishers

    Inverse Problem Theory, Methods for Data Fitting and Model Parameter Estimation , ().

    • Search Google Scholar
  • Tari V, Pamić J 1998: Tectonophysics, 297, 269--281.

    () 297 Tectonophysics : 269 -281.

  • Tóth Gy, Rózsa Sz 2005: Acta Geod. Geoph. Hung., 41 (in press)

    () 41 Acta Geod. Geoph. Hung. .

  • Walsh G R 1975: Methods of Optimization. John Willey and Sons, London, New York, Sydney, Toronto

    Methods of Optimization , ().

  • Skoko D, Prelogovič E, Alinovič B 1987: Geophys. J. R. astr. Soc., 89, 379--382.

    () 89 Geophys. J. R. astr. Soc. : 379 -382.