To solve a geophysical inverse problem means applying measurements to determine the parameters of the selected model. The inverse problem is formulated as the Bayesian inference. The Gaussian probability density functions are applied in the Bayes's equation. The CHAMP satellite gravity data are determined at the altitude of 400 km altitude over the South part of the Pannonian Basin. The model of interpretation is the right vertical cylinder. The parameters of the model are obtained from the minimum problem solved by the Simplex method.
Bayes T 1763: Philosophical Transactions of the Royal Society, 53, 370--418.
() 53 Philosophical Transactions of the Royal Society : 370 -418.
Duijndam A J W 1988b: Geophys. Prospect., 36, 899--918.
() 36 Geophys. Prospect. : 899 -918.
Duijndam A J W 1988a: Geophys. Prospect., 36, 878--898.
() 36 Geophys. Prospect. : 878 -898.
Dean W C 1958: Geophysics, 23, 97--127.
() 23 Geophysics : 97 -127.
Box G E P, Tiao G C 1973: Bayesian Inference in Statistical Analysis. Addison-Wesley Publishing Company
Bayesian Inference in Statistical Analysis , ().
Ilk K H, Mayer-Gürr T, Feuchtinger M 2005: In: Earth Observation with CHAMP. Ch Reigber, H Lühr, P Schwintzer, J Wickert eds, Springer Berlin, Heidelberg, New York, 127--132.
Earth Observation with CHAMP , () 127 -132.
Jefferys W H, Berger J O 1992: Am. Sci., 80, 64--72.
() 80 Am. Sci. : 64 -72.
Marović M, Djoković I, Pešić L, Radovanović S, Toljić M, Gerzina N 2002: EGU Stephan Mueller Special Publication Series, 3, 277--295.
() 3 EGU Stephan Mueller Special Publication Series : 277 -295.
Mayer-Gürr T 2004: Written communication. Institute of Theoretical Geodesy, University of Bonn
Written communication , ().
Mayer-Gürr T, Ilk K H, Feuchtinger M 2005: ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period. J. Geodesy (in press)
'ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period ' () J. Geodesy .
Menke W 1984: Geophysical Data Analysis: Discrete Inverse Theory. Academic Press Inc. International Geophysical Series, Vol. 45.
Geophysical Data Analysis: Discrete Inverse Theory , ().
Nabighian M N 1962: Pure and Appl. Geophys., 53, 45--51.
() 53 Pure and Appl. Geophys. : 45 -51.
Nagy D 1963: Pure and Appl. Geophys., 62, 5--12.
() 62 Pure and Appl. Geophys. : 5 -12.
Nelder J A, Mead R 1965: The Computer J., 7, 308--313.
() 7 The Computer J. : 308 -313.
Reigber Ch, Schwintzer P, Neumayer K-H, Barthelmes F, König R, Förste Ch, Balmino G, Biancale R, Lemoine J-M, Loyer S, Bruinma S, Perosanz F, Fayard T 2003: Adv. Space Res., 31, 1883--1888.
() 31 Adv. Space Res. : 1883 -1888.
Scales J A, Sneider R 1997: Geophysics, 62, 1045--1046.
() 62 Geophysics : 1045 -1046.
Sen M, Stofa P L 1995: Global Optimization Methods in Geophysical Inversion. Elsevier Science Publishers
Global Optimization Methods in Geophysical Inversion , ().
Singh S K 1977: Geophys. J. R. astr. Soc., 50, 243--246.
() 50 Geophys. J. R. astr. Soc. : 243 -246.
Tarantola A 1987: Inverse Problem Theory, Methods for Data Fitting and Model Parameter Estimation. Elsevier Science Publishers
Inverse Problem Theory, Methods for Data Fitting and Model Parameter Estimation , ().
Tari V, Pamić J 1998: Tectonophysics, 297, 269--281.
() 297 Tectonophysics : 269 -281.
Tóth Gy, Rózsa Sz 2005: Acta Geod. Geoph. Hung., 41 (in press)
() 41 Acta Geod. Geoph. Hung. .
Walsh G R 1975: Methods of Optimization. John Willey and Sons, London, New York, Sydney, Toronto
Methods of Optimization , ().
Skoko D, Prelogovič E, Alinovič B 1987: Geophys. J. R. astr. Soc., 89, 379--382.
() 89 Geophys. J. R. astr. Soc. : 379 -382.