View More View Less
  • 1 Geomathematics Group, University of Kaiserslautern POB 3049, D-67653 Kaiserslautern, Germany
  • 2 Geomathematics Group, University of Kaiserslautern POB 3049, D-67653 Kaiserslautern, Germany
Restricted access

Based on the well-known results of classical potential theory, viz. the limit and jump relations for layer integrals, a numerically viable and efficient multiscale method of approximating the disturbing potential from gravity anomalies is established on regular surfaces, i.e., on telluroids of ellipsoidal or even more structured geometric shape. The essential idea is to use scale dependent regularizations of the layer potentials occurring in the integral formulation of the linearized Molodensky problem to introduce scaling functions and wavelets on the telluroid. As an application of our multiscale approach some numerical examples are presented on an ellipsoidal telluroid.

  • Freeden W 1980b: Math. Meth. Appl. Sci., 2, 397-409.

    () 2 Math. Meth. Appl. Sci. : 397 -409.

  • Freeden W, Hesse K 2002: In: Bericht der Arbeitsgruppe Technomathematik Nr 250, TU Kaiserslautern

  • Freeden W, Michel V 2004: Multiscale Potential Theory (With Applications to Geoscience), Birkhäuser, Boston

  • Freeden W, Gervens T, Schreiner M 1998: Constructive Approximation on the Sphere (With Applications to Geomathematics). Oxford Science Publications, Clarendon

  • Freeden W 1999: Multiscale Modelling of Spaceborn Geodata. B G Teubner, Stuttgart, Leipzig

    Multiscale Modelling of Spaceborn Geodata , ().

  • Freeden W, Maier T 2002: Electronic Transactions on Numerical Analysis (ETNA), 14, 40-62.

    () 14 Electronic Transactions on Numerical Analysis (ETNA) : 40 -62.

  • Colton D, Kress R 1983: Integral Equation Methods in Scattering Theory. John Wiley & Sons, New York

    Integral Equation Methods in Scattering Theory , ().

  • Dahmen W 1997: Wavelet and Multiscale Methods for Operator Equations. Acta Numerica, Cambridge University Press, 55-228.

    Acta Numerica , () 55 -228.

  • Glockner O 2001: On Numerical Aspects of Gravitational Field Modeling from SST and SGG by Harmonic Splines and Wavelets (With Application to CHAMP Data). Ph.D-Thesis, Department of Mathematics, Geomathematics Group, Shaker, Aachen

  • Gutting M 2002: Multiscale Gravitational Field Modeling from Oblique Derivatives, Diploma Thesis, Department of Mathematics, Geomathematics Group, University of Kaiser-slautern

  • Heiskanen W A, Moritz H 1967: Physical Geodesy. W H Freeman and Company

    Physical Geodesy , ().

  • Hesse K 2003: Domain Decomposition Methods in Multiscale Geopotential Determination from SST and SGG. Ph.D-Thesis, Department of Mathematics, Geomathematics Group, Shaker, Aachen

  • Hörmander L 1976: Arch. Rat. Mech. Anal., 62, 1-52.

    () 62 Arch. Rat. Mech. Anal. : 1 -52.

  • Kellogg O D 1929: Foundations of Potential Theory. Frederick Ungar Publishing Company

    Foundations of Potential Theory , ().

  • Kersten H 1980: Resultate der Mathematik, 3, 17-24.

    () 3 Resultate der Mathematik : 17 -24.

  • Klees R, van Gelderen M, Lage C, Schwab C 1999: In: Research Report No. 99-16, Seminar für Angewandte Mathematik, ETH Zürich

  • Lax P D 1954: Comm. Pure. Appl. Math., 7, 633-647.

    () 7 Comm. Pure. Appl. Math. : 633 -647.

  • Lemoine F G, Kenyon S C, Factor J K, Trimmer R G, Pavlis N K, Chinn D S, Cox C M, Klosko S M, Luthcke S B, Torrence M H, Wang Y M, Williamson R G, Pavlis E C, Rapp R H, Olson T R 1998: The Development of the Doint NASA GSFC and NIMA Geopotential Model EGM96. NASA/TP-1998-206861

  • Martensen E 1968: Potentialtheorie. B G Teubner, Stuttgart

  • Martinec Z 1999: Boundary-value Problems for Gravimetric Determination of a Precise Geoid. Springer, Berlin, Heidelberg, New York

    Boundary-value Problems for Gravimetric Determination of a Precise Geoid , ().

  • Mayer C 2001: Potential Operators, Jump Relations and Wavelets. (Diploma Thesis, Department of Mathematics, Geomathematics Group, University of Kaiserslautern

  • Michlin S G 1975: Lehrgang der Mathematischen Physik. 2nd edition, Akademie Verlag, Berlin

    Lehrgang der Mathematischen Physik , ().

  • Moritz H 1977: In: Report of the Department of Geodetic Science No. 266, Ohio State University, Columbus, Ohio

  • Müller C 1966: Spherical Harmonics. Lecture Notes in Mathematics, 17. Springer, Berlin

  • Müller C 1969: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin

  • Otero J 1998: Quart. Appl. Math., 56, 245-257.

    () 56 Quart. Appl. Math. : 245 -257.

  • Ritter S 1998: J. Geodesy, 72, 101-106.

    () 72 J. Geodesy : 101 -106.

  • Freeden W, Mayer C 2003: Applied Computational Harmonic Analysis (ACHA), 14, 195-237.

    () 14 Applied Computational Harmonic Analysis (ACHA) : 195 -237.

  • Freeden W, Windheuser U 1996b: Adv. Comput. Math., 5, 51-94.

    () 5 Adv. Comput. Math. : 51 -94.

  • Freeden W, Schreiner M, Franke R 1996a: Surv. Math., 7, 29-85.

    () 7 Surv. Math. : 29 -85.

  • Davis P J 1963: Interpolation and Approximation. Blaisdell Publishing Company Freeden W 1980a: Bull. Géod., 54, 1-20.

    () 54 Bull. Géod. : 1 -20.