Authors:
M. Eshagh Royal Institute of Technology Division of Geodesy Stockholm Sweden

Search for other papers by M. Eshagh in
Current site
Google Scholar
PubMed
Close
,
M. Bagherbandi Royal Institute of Technology Division of Geodesy Stockholm Sweden

Search for other papers by M. Bagherbandi in
Current site
Google Scholar
PubMed
Close
, and
L. Sjöberg Royal Institute of Technology Division of Geodesy Stockholm Sweden

Search for other papers by L. Sjöberg in
Current site
Google Scholar
PubMed
Close
Restricted access

The Moho depth can be determined using seismic and/or gravimetric methods. These methods will not yield the same result as they are based on different hypotheses as well as different types, qualities and distributions of data. Here we present a new global model for the Moho computed based on a stochastic combination of seismic and gravimetric Moho models. This method employs condition equations in the spectral domain for the seismic and gravimetric models as well as degree-order variance component estimation to optimally weight the corresponding harmonics in the combination. The preliminary data for the modelling are the seismic model CRUST2.0 and a new gravimetric Moho model based on the inverse solution of the Vening Meinez-Moritz isostatic hypothesis and the global Earth Gravitational Model EGM08. Numerical results show that this method of stochastic combination agrees better with the seismic Moho model (3.6 km rms difference) than the gravimetric one. The model should be a candidate for dandifying the frequently sparsely data CRUST2.0. We expect that this way of combining seismic and gravimetric data would be even more fruitful in a regional study.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Geodaetica et Geophysica
Language English
Size B5
Year of
Foundation
2013
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó Springer
Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2213-5812 (Print)
ISSN 2213-5820 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2022 7 0 0
Jul 2022 5 0 0
Aug 2022 10 0 0
Sep 2022 5 0 0
Oct 2022 9 0 0
Nov 2022 9 0 0
Dec 2022 2 0 0