Authors:
S. Szalai Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences POB 5 H-9401 Sopron Hungary

Search for other papers by S. Szalai in
Current site
Google Scholar
PubMed
Close
,
M. Varga KBFI-TRIÁSZ Kft Budapest Hungary

Search for other papers by M. Varga in
Current site
Google Scholar
PubMed
Close
,
A. Novák Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences POB 5 H-9401 Sopron Hungary

Search for other papers by A. Novák in
Current site
Google Scholar
PubMed
Close
, and
L. Szarka Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences POB 5 H-9401 Sopron Hungary

Search for other papers by L. Szarka in
Current site
Google Scholar
PubMed
Close
Restricted access

In this paper we provide a comprehensive summary about the practical results of the OTKA project K49604. 1. We calculated the consequences of incorrect positioning of the electrodes for various multielectrode systems. In practice these effects were found to be negligible. The only exception is the case of rocky surface, where it is impossible to put the electrodes in the desired positions. The errors can however be kept within an acceptable range, if the electrodes of the linear arrays are put off-set, at right angles from the measuring line. A five-six times larger off-set has less effect than a certain mis-position along the line, connecting the electrodes. 2. We carried out tensorial geoelectric measurements around the Cistercian Monastery at Pilisszentkereszt. Areal measurements provide much more detailed and unambiguous anomalies than 2D profile measurements, and the tensor invariant representation of apparent resistivity anomalies provides a realistic picture about the lateral variation of the subsurface resistivity, even in field circumstances. 3. We tested the applicability of 3D electrical resistivity tomography (ERT) technique to detect landmines in different soil conditions and at various depths. Metallic and non-metallic landmines buried in wet and dry soils had been synthetically modeled. According to the inverted resistivity data using the dipole axial array in wet environment, it was possible to locate the metallic and non-metallic landmines as long as the noise level was about 5%. 4. We elaborated moreover a geoelectrical procedure which is able to map multidirectional fissure systems by combining geoelectrical profiling and geoelectrical azimuthal measurements. Results received by using both the so-called null-, and traditional arrays were jointly interpreted. The humidity of the fissures affects the measured results significantly, and in a meaningful way. 5. We presented the socalled standardized pricking probe (PP) surveying technique and demonstrated its usefulness in an archaeological study. The PP images proved to be definitely more close to the realistic shape of the buried chapel than the geoelectric and magnetic measurements, and they also revealed more details about the subsurface than the georadar. The optimum PP parameters: horizontal interval, pricking depth, observable quantity and its way of presentation were optimized through field experiments. For more details see the cited publications. The figures ever published in Hungarian journals are not reproduced here.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Geodaetica et Geophysica
Language English
Size B5
Year of
Foundation
2013
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó Springer
Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2213-5812 (Print)
ISSN 2213-5820 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 32 1 3
Jan 2024 22 1 1
Feb 2024 5 0 0
Mar 2024 30 0 0
Apr 2024 28 0 0
May 2024 5 0 0
Jun 2024 0 0 0