Author:
O. Leimar Department of Zoology, Stockholm University S-106 91 Stockholm, Sweden

Search for other papers by O. Leimar in
Current site
Google Scholar
PubMed
Close
Restricted access

Models of adaptive evolution often have the property that change is guided by, but not fully determined by fitness. In a given situation many different mutant phenotypes may have a fitness advantage over the residents, and are thus potential invaders, implying that the mutational process plays an important role in deciding which particular invasion will take place. By introducing an imaginary 'Darwinian demon' in charge of mutations, one can examine the maximal role that mutation could play in determining evolutionary change. Taking into account pleiotropic mutations and shifting fitness landscapes, it seems likely that a Darwinian demon could exert considerable influence and most likely would be able to produce any viable form of organism. This kind of perspective can be helpful in clarifying concepts of evolutionary stability.

  • Friedman, D. (1991): Evolutionary games in economics. Econometrica59:637-666.

    'Evolutionary games in economics ' () 59 Econometrica : 637 -666 .

  • Abrams, P. A., Matsuda, H. and Harada, Y. (1993): Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evol. Ecol. 7:465-487.

    'Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits ' () 7 Evol. Ecol : 465 -487 .

    • Search Google Scholar
  • Charnov, E. L. (1982): The Theory of Sex Allocation. Princeton University Press, Princeton.

    The Theory of Sex Allocation , ().

  • Christiansen, F. B. (1991): On conditions for evolutionary stability for a continuously varying character. Amer. Nat. 138:37-50.

    'On conditions for evolutionary stability for a continuously varying character ' () 138 Amer. Nat : 37 -50 .

    • Search Google Scholar
  • Geritz, S. A. H., Kisdi, É., Meszéna, G. and Metz, J. A. J. (1998): Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12:35-57.

    'Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree ' () 12 Evol. Ecol : 35 -57 .

    • Search Google Scholar
  • Hammerstein, P. (1996): Darwinian adaptation, population genetics and the streetcar theory of evolution. J. Math. Biol. 34:511-532.

    'Darwinian adaptation, population genetics and the streetcar theory of evolution ' () 34 J. Math. Biol : 511 -532 .

    • Search Google Scholar
  • Hammerstein, P. and Selten, R. (1994): Game theory and evolutionary biology. In Aumann, R. J. and Hart, S. (eds): Handbook of Game Theory, Volume 2. Elsevier Science B. V., Amsterdam, pp. 929-993.

    Handbook of Game Theory , () 929 -993 .

  • Hofbauer, J. and Sigmund, K. (1998): Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge.

    Evolutionary Games and Population Dynamics , ().

  • Leimar, O. (2002): Multidimensional convergence stability and the canonical adaptive dynamics. In Dieckmann, U. and Metz, J. A. J. (eds): Elements of Adaptive Dynamics. Cambridge University Press, Cambridge, in press.

    Elements of Adaptive Dynamics , ().

  • Lessard, S. (1990): Evolutionary stability: One concept, several meanings. Theor. Popul. Biol. 37:159-170.

    'Evolutionary stability: One concept, several meanings ' () 37 Theor. Popul. Biol : 159 -170 .

    • Search Google Scholar
  • MacArthur, R. H. (1965): Ecological consequences of natural selection. In Waterman, T. H. and Morowitz, H. (eds): Theoretical and Mathematical Biology. Blaisdell, New York, pp. 388-397.

    Theoretical and Mathematical Biology , () 388 -397 .

  • Dieckmann, U. and Law, R. (1996): The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biol. 34:579-612.

    'The dynamical theory of coevolution: A derivation from stochastic ecological processes ' () 34 J. Math. Biol : 579 -612 .

    • Search Google Scholar
  • Marrow, P., Dieckmann, U. and Law, R. (1996): Evolutionary dynamics of predator prey systems: An ecological perspective. J. Math. Biol. 34:556-578.

    'Evolutionary dynamics of predator prey systems: An ecological perspective ' () 34 J. Math. Biol : 556 -578 .

    • Search Google Scholar
  • Marrow, P., Law, R. and Cannings, C. (1992): The coevolution of predator prey interactions: ESSs and Red Queen dynamics. Proc. R. Soc. Lond. B250:133-141.

    'The coevolution of predator prey interactions: ESSs and Red Queen dynamics ' () 250 Proc. R. Soc. Lond. B : 133 -141 .

    • Search Google Scholar
  • Marrow, P., Johnstone, R. A. and Hurst, L. D. (1996): Riding the evolutionary streetcar: Where population genetics and game theory meet. Trends Ecol. Evol. 11:445-446.

    'Riding the evolutionary streetcar: Where population genetics and game theory meet ' () 11 Trends Ecol. Evol : 445 -446 .

    • Search Google Scholar
  • Matessi, C. and Di Pasquale, C. (1996): Long-term evolution of multilocus traits. J. Math. Biol. 34:613-653.

    'Long-term evolution of multilocus traits ' () 34 J. Math. Biol : 613 -653 .

  • Metz, J. A. J., Nisbet, R. M. and Geritz, S. A. H. (1992): How should we define 'fitness' for general ecological scenarios? Trends Ecol. Evol. 7:198-202.

    'How should we define 'fitness' for general ecological scenarios ' () 7 Trends Ecol. Evol : 198 -202 .

    • Search Google Scholar
  • Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A. and van Heerwaarden, J. S. (1996): Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In van Strien, S. J. and Verduyn Lunel, S. M. (eds): Stochastic and Spatial Structures of Dynamical Systems. North Holland, Amsterdam, pp. 183-231.

    Stochastic and Spatial Structures of Dynamical Systems , () 183 -231 .

  • Motro, U. (1994): Evolutionary and continuous stability in asymmetric games with continuous strategy sets: The parental investment game as an example. Amer. Nat. 144: 229-241.

    'Evolutionary and continuous stability in asymmetric games with continuous strategy sets: The parental investment game as an example ' () 144 Amer. Nat : 229 -241 .

    • Search Google Scholar
  • Pen, I. and Weissing, F. J. (2002): Optimal sex allocation: Steps towards a mechanistic theory. In Hardy, I. (ed.): The Sex Ratio Handbook. Cambridge University Press, Cambridge, in press.

    The Sex Ratio Handbook , ().

  • Pomiankowski, A., Iwasa, Y. and Nee, S. (1991): The evolution of costly mate preferences I. Fisher and biased mutations. Evolution45:1422-1430.

    'The evolution of costly mate preferences I. Fisher and biased mutations ' () 45 Evolution : 1422 -1430 .

    • Search Google Scholar
  • Rand, D. A., Wilson, H. B. and McGlade, J. M. (1994): Dynamics and evolution: Evolutionarily stable attractors, invasion exponents and phenotype dynamics. Phil. Trans. R. Soc. Lond. B343:261-283.

    'Dynamics and evolution: Evolutionarily stable attractors, invasion exponents and phenotype dynamics ' () 343 Phil. Trans. R. Soc. Lond. B : 261 -283 .

    • Search Google Scholar
  • Shaw, R. F. and Mohler, J. D. (1953): The selective advantage of the sex ratio. Amer. Nat. 87:337-342.

    'The selective advantage of the sex ratio ' () 87 Amer. Nat : 337 -342 .

  • Eshel, I. and Motro, U. (1981): Kin selection and strong evolutionary stability of mutual help. Theor. Popul. Biol. 19:420-433.

    'Kin selection and strong evolutionary stability of mutual help ' () 19 Theor. Popul. Biol : 420 -433 .

    • Search Google Scholar
  • Ferriere, R. and Gatto, M. (1995): Lyapunov exponents and the mathematics of invasions in oscillatory or chaotic populations. Theor. Popul. Biol. 48:126-171.

    'Lyapunov exponents and the mathematics of invasions in oscillatory or chaotic populations ' () 48 Theor. Popul. Biol : 126 -171 .

    • Search Google Scholar
  • Eshel, I., Motro, U. and Sansone, E. (1997): Continuous stability and evolutionary convergence. J. Theor. Biol. 185:333-343.

    'Continuous stability and evolutionary convergence ' () 185 J. Theor. Biol : 333 -343 .

    • Search Google Scholar
  • Orr, H. A. (1998): The population genetics of adaptation: The distribution of factors fixed during adaptive evolution. Evolution52:935-949.

    'The population genetics of adaptation: The distribution of factors fixed during adaptive evolution ' () 52 Evolution : 935 -949 .

    • Search Google Scholar
  • Taylor, P. (1989): Evolutionary stability of one-parameter models under weak selection. Theor. Popul. Biol. 36:125-143.

    'Evolutionary stability of one-parameter models under weak selection ' () 36 Theor. Popul. Biol : 125 -143 .

    • Search Google Scholar
  • Maxwell, J. C. (1908): Theory of Heat. Longmans, Green and Co, London.

    Theory of Heat , ().

  • Maynard Smith, J. (1982): Evolution and the Theory of Games. Cambridge University Press, Cambridge.

    Evolution and the Theory of Games , ().

  • Eshel, I. (1983): Evolutionary and continuous stability. J. Theor. Biol. 103:99-111.

    'Evolutionary and continuous stability ' () 103 J. Theor. Biol : 99 -111 .

  • Lande, R. (1981): Models of speciation by selection on polygenic traits. Proc. Natl. Acad. Sci. USA78:3721-3725.

    'Models of speciation by selection on polygenic traits ' () 78 Proc. Natl. Acad. Sci. USA : 3721 -3725 .

    • Search Google Scholar
  • Collapse
  • Expand

Selection
Language English
Year of
Foundation
2001
Publication
Programme
ceased
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-1931 (Print)
ISSN 1588-287X (Online)