The Darwinian evolution of a quantitative adaptive character is described as a jump process. As the variance of the distribution of mutation steps goes to zero, this process converges in law to the solution of an ordinary differential equation. In the case where the mutation step distribution is symmetrical, this establishes rigorously the so-called canonical equation first proposed by Dieckmann and Law (1996). Our mathematical approach naturally leads to extend the canonical equation to the case of biased mutations, and to seek ecological and genetic conditions under which evolution proceeds either through punctualism or through radiation.
Marrow, P., Law, R. and Cannings, C. (1992): The coevolution of predator-prey interactions: ESSs and Red Queen dynamics. Proc. R. Soc. Lond. B250:133-141.
'The coevolution of predator-prey interactions: ESSs and Red Queen dynamics ' () 250 Proc. R. Soc. Lond. B : 133 -141 .
Metz, J. A. J., Nisbet, R. M. and Geritz, S. A. H. (1992): How should we define 'fitness' for general ecological scenarios? Trends Ecol. Evolut. 7:198-202.
'How should we define 'fitness' for general ecological scenarios ' () 7 Trends Ecol. Evolut : 198 -202 .
Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. A. J. and van Heerwaarden, J. S. (1996): Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In van Strien, S. J., Verduyn Lunel, S. M. (eds): Stochastic and Spatial Structures of Dynamical Systems. North Holland, Amsterdam, pp. 183-231.
Stochastic and Spatial Structures of Dynamical Systems , () 183 -231 .
Mukai, T. (1964): Polygenic mutation affecting quantitative character of Drosophila melanogaster. In Mutations in Quantitative Traits. Proceedings Gamma Field Symposium 3, Ministry of Agriculture, Japan, pp. 13-29.
'Polygenic mutation affecting quantitative character of Drosophila melanogaster ' , , .
Pomiankowski, A., Iwasa, Y. and Nee, S. (1991): The evolution of costly mate preferences I. Fisher and biased mutation. Evolution45:1422-1430.
'The evolution of costly mate preferences I. Fisher and biased mutation ' () 45 Evolution : 1422 -1430 .
Rand, D. A. and Wilson, H. B. (1993): Evolutionary catastrophes, punctuated equilibria and gradualism in ecosystem evolution. Proc. R. Soc. Lond. B253:137-141.
'Evolutionary catastrophes, punctuated equilibria and gradualism in ecosystem evolution ' () 253 Proc. R. Soc. Lond. B : 137 -141 .
Schluter, D. (2000): The Ecology of Adaptive Radiation oxford University Press, Oxford.
The Ecology of Adaptive Radiation , ().
Stanley, S. M. (1979): Macroevolution: Pattern and Process. Freeman, San Francisco, Ca.
Macroevolution: Pattern and Process , ().
Wentzel, A. D. (1976b): Rough limit theorems on large deviations for Markov random processes, II. TheoryProbab. Appl. 21:499-512.
'Rough limit theorems on large deviations for Markov random processes, II ' () 21 Theory Probab. Appl : 499 -512 .
Lai, C. and Mackay, T. (1990): Hybrid dysgenesis-induced quantitative variation the X chromosome of Drosophila melanogaster. Genetics124:627-636.
'Hybrid dysgenesis-induced quantitative variation the X chromosome of Drosophila melanogaster ' () 124 Genetics : 627 -636 .
Freidlin, M. I. and Wentzel, A. D. (1984): Random Perturbations of Dynamical Systems. Springer-Verlag, Berlin.
Random Perturbations of Dynamical Systems , ().
Hofbauer, J. and Sigmund, R. (1990): Adaptive dynamics and evolutionary stability. Appl. Math. Lets3:75-79.
'Adaptive dynamics and evolutionary stability ' () 3 Appl. Math. Lets : 75 -79 .
Kisdi, E. (1999): Evolutionary branching under asymmetric competition. J. Theor. Biol. 198:149-162.
'Evolutionary branching under asymmetric competition ' () 198 J. Theor. Biol : 149 -162 .
Doebeli, M. and Dieckmann, U. (2000): Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Amer. Nat. 156:S77-S101.
'Evolutionary branching and sympatric speciation caused by different types of ecological interactions ' () 156 Amer. Nat. : S77 -S101 .
Ethier, S. and Kurtz, T. (1986): Markov Processes, Characterization and Convergence. John Wiley and Sons, New York.
Markov Processes, Characterization and Convergence , ().
Wentzel, A. D. (1976a): Rough limit theorems on large deviations for Markov random processes, I. TheoryProbab. Appl. 21:227-242.
'Rough limit theorems on large deviations for Markov random processes, I ' () 21 Theory Probab. Appl : 227 -242 .
Dieckmann, U. and Law, R. (1996): The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biol. 34:579-612.
'The dynamical theory of coevolution: A derivation from stochastic ecological processes ' () 34 J. Math. Biol : 579 -612 .