View More View Less
  • 1 Universidad del Zulia Facultad de Agronomía Av. Ziruma Maracaibo Venezuela
  • | 2 Colegio de Postgraduados Botánica and Fitopatología Carretera México-Texcoco Km 35.5 Montecillo México 56230
  • | 3 UASLP Instituto de Investigación de Zonas Desérticas San Luis Potosí, México. Altaír 200, Col. del Llano San Luis Potosí S.L.P. México 78377
Restricted access

The effect of substrate water potential (Ψ W ) in root growth and proline content of maize seedlings of Tuxpeño Sequía C0 (TSC0) and Tuxpeño Sequía C8 (TSC8), sensitive and resistant to drought respectively, were evaluated. Seventy two hours old seedlings, with 5 cm root length, were maintained for 24 h in vermiculite at Ψ W between −0.03 and −2.35 MPa. Root length, fresh and dry weight, number of lateral roots and proline content were evaluated. Root enlargement of TSC0 was significantly higher than TSC8 at −0.03 MPa, but the response was opposite at low substrate Ψ W . The number of lateral roots was reduced in 23% in TSC8 at the lowest substrate Ψ W (−2.35 MPa) but it was not significantly affected in TSC0. A higher proline content was quantified in the cell division root region than in differentiation root region in both maize populations (5.64 and 6.96 μmol 100 mg −1 of dry weight in TSC0 and TSC8, respectively); and Ψ W between −0.65 and −2.35 MPa induced a drastic and significant increase of proline content in both populations. The statistical interaction between maize population, substrate Ψ W , and root region was highly significant (P≤0.0039) for proline content. The results demonstrated that eight cycles of recurrent selection of Tuxpeño for drought tolerance induced a reduction of the number of secondary roots and proline content in the differentiation root region, but a proline increase in the cell division region when root seedling grow under no restrictive water conditions (Ψ W =−0.03 MPa), beside recurrent selection modified root reaction to low substrate Ψ W by accumulation of dry matter and proline.

  • Akkas, M; A.K.M.A. Prodhan; M.A. Haque. 1999. Effect of water stress on the anatomical characters of root and item of maize plant. Indian J. Agric. Res. 33:245–253.

    Haque M.A. , 'Effect of water stress on the anatomical characters of root and item of maize plant ' (1999 ) 33 Indian J. Agric. Res. : 245 -253.

    • Search Google Scholar
  • Albarrán R., A.E. 2004. Efectos de la restricción de humedad en la fisiología, crecimiento, componentes del rendimiento y calidad del grano de centeno ( Secale cereale L.) y trigo ( Triticum aestivum L.). Tesis de maestría. Colegio de Postgraduados, Montecillo, México. 104 p.

    Albarrán R. , '', in Tesis de maestría , (2004 ) -.

  • Bolaños, J.; G.O. Edmeades. 1993a. Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in grain yield, biomass and radiation utilization. Field Crops Res. 31:233–252.

    Edmeades G.O. , 'Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in grain yield, biomass and radiation utilization ' (1993 ) 31 Field Crops Res. : 233 -252.

    • Search Google Scholar
  • Bolaños, J.; G.O. Edmeades. 1993b. Eight cycles of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. Field Crops Res. 31:253–268.

    Edmeades G.O. , 'Eight cycles of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior ' (1993 ) 31 Field Crops Res. : 253 -268.

    • Search Google Scholar
  • Bates, L.W.; Waldren R.P.; Teare L.D. 1973. Rapid determination of proline for water stress studies. Plant and Soil 39:205–207.

    Teare L.D. , 'Rapid determination of proline for water stress studies ' (1973 ) 39 Plant and Soil : 205 -207.

    • Search Google Scholar
  • Cruz, R.T.; W.R. Jordan; M.C. Drew. 1992. Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol. 99:203–212.

    Drew M.C. , 'Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit ' (1992 ) 99 Plant Physiol. : 203 -212.

    • Search Google Scholar
  • Dhanda, S.S.; G.S. Seit; R.K. Behl. 2002. Inheritance of seedling traits under drought stress conditions in bread wheat. Cereal Res. Comm. 30:293–300.

    Behl R.K. , 'Inheritance of seedling traits under drought stress conditions in bread wheat ' (2002 ) 30 Cereal Res. Comm. : 293 -300.

    • Search Google Scholar
  • Ellis, R.H.; T.D. Hong; E.H. Roberts. 1985. General approaches to promoting seed germination. In: Handbook of seed technology for genebanks. Vol. II. Compendium of specific germination. International Board for Plant Genetic Resources. Rome. pp. 221–237.

  • Ferrarotto S., M. 2003. Proline accumulation in pigweed plants ( Amaranthus dubius Mart, and Amaranthus cruentus L.) growing under water stress conditions. Rev. Fac. Agron., Universidad del Zulia 20:453–460.

    Ferrarotto S. , 'Proline accumulation in pigweed plants (Amaranthus dubius Mart, and Amaranthus cruentus L.) growing under water stress conditions ' (2003 ) 20 Rev. Fac. Agron., Universidad del Zulia : 453 -460.

    • Search Google Scholar
  • Hochholdinger, F.; K. Woll; M. Sauer; D. Dembinsky. 2004. Genetic dissection of root formation in maize ( Zea mays ) reveals root-type specific developmental programmes. Annals Bot. 93:359–368.

    Dembinsky D. , 'Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes ' (2004 ) 93 Annals Bot. : 359 -368.

    • Search Google Scholar
  • Huang, B.; H. Gao. 2000. Root physiological characteristics associated with drought resistance in tall fescue cultivars. Crop Sci. 40:196–203.

    Gao H. , 'Root physiological characteristics associated with drought resistance in tall fescue cultivars ' (2000 ) 40 Crop Sci. : 196 -203.

    • Search Google Scholar
  • Irizar-Garzar, M.B.G.; C.B. Peña-Valdivia. 2000. Chlorophyll and photosynthetic oxygen evolution in water-stressed triticale ( Tricosecale Wittmack) and wheat ( Triticum aestivum L.) during vegetative stage. Cereal Res. Comm. 28(4):387–394.

    Peña-Valdivia C.B. , 'Chlorophyll and photosynthetic oxygen evolution in water-stressed triticale (Tricosecale Wittmack) and wheat (Triticum aestivum L.) during vegetative stage ' (2000 ) 28 Cereal Res. Comm. : 387 -394.

    • Search Google Scholar
  • Khan, I.A.; H.A.S. Habib S.; M.H.N. Tahir. 2004. Selection criteria based on seedling growth parameters in maize varies under normal and water stress conditions. Int. J. Agric. Biol. 6(2):252–256.

    Tahir M.H.N. , 'Selection criteria based on seedling growth parameters in maize varies under normal and water stress conditions ' (2004 ) 6 Int. J. Agric. Biol. : 252 -256.

    • Search Google Scholar
  • Maiti, R.K., V.P. Singh, P. Wesche-Ebeling, E. Sanchez-Arreola, T. Hernández, E. Aguilar-Najera. 2004. Research advances on cold, drought and salinity tolerance and its mechanisms of resistance in maize ( Zea mays L.) — a review. Crop Res. (Hisar) 27:1–29.

    Aguilar-Najera E. , 'Research advances on cold, drought and salinity tolerance and its mechanisms of resistance in maize (Zea mays L.) — a review ' (2004 ) 27 Crop Res. (Hisar) : 1 -29.

    • Search Google Scholar
  • Meloni, D.R.; Oliva M.A.; Ruiz H.A.; Martínez C.A. 2001. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J. Plant Nutr. 24:599–612.

    Martínez C.A. , 'Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress ' (2001 ) 24 J. Plant Nutr. : 599 -612.

    • Search Google Scholar
  • Nilsen, E.T.; D.M. Orcutt. 1996. Physiology of plants under stress. John Wiley & Sons, Inc. USA. 689 p.

    Orcutt D.M. , '', in Physiology of plants under stress , (1996 ) -.

  • Ober, E.S.; R.E. Sharp. 1994. Proline accumulation in maize ( Zea mays L.) primary roots at low water potentials. Plant Physiol. 105:981–987.

    Sharp R.E. , 'Proline accumulation in maize (Zea mays L.) primary roots at low water potentials ' (1994 ) 105 Plant Physiol. : 981 -987.

    • Search Google Scholar
  • Prechamandra, G.S.; Saneora H.; Fujita K.; Ogata S. 1992. Osmotic adjustment and stomatal response to water deficit in maize. J. Exp. Bot. 43:1451–1456.

    Ogata S. , 'Osmotic adjustment and stomatal response to water deficit in maize ' (1992 ) 43 J. Exp. Bot. : 1451 -1456.

    • Search Google Scholar
  • Raymond, M.J.; Smimoff N. 2002. Proline metabolism and transport in maize seedlings at low water potential. Ann. Bot. 89:813–823.

    Smimoff N. , 'Proline metabolism and transport in maize seedlings at low water potential ' (2002 ) 89 Ann. Bot. : 813 -823.

    • Search Google Scholar
  • Sánchez-Urdaneta, A.B.; C.B. Peña-Valdivia; J.R. Aguirre R.; C. Trejo; E. Cárdenas; A. Galicia J. 2003. Evaluación de la permeabilidad de las membranas radicales de plántulas de frijol ( Phaseolus vulgaris L.) silvestre y domesticado bajo déficit de humedad. Interciencia 28:597–603.

    Galicia J A. , 'Evaluación de la permeabilidad de las membranas radicales de plántulas de frijol (Phaseolus vulgaris L.) silvestre y domesticado bajo déficit de humedad ' (2003 ) 28 Interciencia : 597 -603.

    • Search Google Scholar
  • Sánchez-Urdaneta, A.B.; C.B. Peña-Valdivia; J.R. Aguirre R.; C. Trejo; E. Cárdenas. 2004. Efectos del potencial de agua en el crecimiento radical de Agave salmiana Otto ex Salm-Dyck. Interciencia 29:626–631.

    Cárdenas E. , 'Efectos del potencial de agua en el crecimiento radical de Agave salmiana Otto ex Salm-Dyck ' (2004 ) 29 Interciencia : 626 -631.

    • Search Google Scholar
  • SAS Institute. 1999–2000. SAS user’s guide: Statistics. Version 8.1. SAS Institute Inc. Cary, NC. USA. 1290 p.

    '', in SAS user’s guide: Statistics , (1999 ) -.

  • Sharp, R.E.; W.K. Silk; T.C. Hsiao. 1988. Growth of the maize primary root at low water potentials. I. Spatial distribution of expansive growth. Plant Physiol. 87:50–57.

    Hsiao T.C. , 'Growth of the maize primary root at low water potentials. I. Spatial distribution of expansive growth ' (1988 ) 87 Plant Physiol. : 50 -57.

    • Search Google Scholar
  • Sofo, A.; B. Dichio; C. Xiloyannis; A. Masia. 2004. Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiol. Plantarum 121(1):58–65.

    Masia A. , 'Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress ' (2004 ) 121 Physiol. Plantarum : 58 -65.

    • Search Google Scholar
  • Tuberosa, R.; S. Salvi; M.C. Sanguineti; P. Landi; M. Maccaferri; S. Coti. 2002. Mapping QTLs regulating morpho-physiological traits and yield, case studies, shortcomings and perspectives in drought-stressed maize. Ann. Bot. 89:941–963.

    Coti S. , 'Mapping QTLs regulating morpho-physiological traits and yield, case studies, shortcomings and perspectives in drought-stressed maize ' (2002 ) 89 Ann. Bot. : 941 -963.

    • Search Google Scholar
  • Turner, N.C. 1997. Further progress in crop water relations. Adv. Agron. 58:293–338.

    Turner N.C. , 'Further progress in crop water relations ' (1997 ) 58 Adv. Agron. : 293 -338.

  • Umayal, L.; R.C. Babu; P. Chezhian; S. Sadasivam. 2001. Water stress induced histological and enzymatic changes in roots of rice cultivars. Plant Archives 1(1/2):31–34.

    Sadasivam S. , 'Water stress induced histological and enzymatic changes in roots of rice cultivars ' (2001 ) 1 Plant Archives : 31 -34.

    • Search Google Scholar
  • XingYuan, Z.; C. FuLiang, L. GuoHua. 2004. Physiological responses of two warm-season turfgrasses to persistent soil drought stress. Acta Prataculturae Sinica 13:84–88.

    GuoHua L. , 'Physiological responses of two warm-season turfgrasses to persistent soil drought stress ' (2004 ) 13 Acta Prataculturae Sinica : 84 -88.

    • Search Google Scholar

Click HERE for submission guidelines

Manuscript submission: CRC Manuscript Submission

 

Senior editors

Editor(s)-in-Chief: Pauk, János

Technical Editor(s): Hajdu Buza, Kornélia

Technical Editor(s): Lantos, Csaba

Editorial Board

  • A. Aniol (Poland)
  • P. S. Baenziger (USA)
  • R.K. Behl (India)
  • F. Békés (Australia)
  • L. Bona (Hungary)
  • A. Börner (Germany)
  • R. N. Chibbar (Canada)
  • S. Gottwald (Germany)
  • A. Goyal (Canada)
  • H. Grausgruber (Austria)
  • T. Harangozó (Hungary)
  • E. Kapusi (Austria)
  • E.K. Khlestkina (Russia)
  • J. Kolmer (USA)
  • V. Korzun (Germany)
  • R. A. McIntosh (Australia)
  • Á. Mesterházy (Hungary)
  • A. Mohan (USA)
  • I. Molnár (Hungary)
  • M. Molnár-Láng (Hungary)
  • A. Pécsváradi (Hungary)
  • S. K. Rasmussen (Denmark)
  • N. Rostoks (Latvia)
  • M. Taylor (Germany)
  • J. Zhang (China)
  • X.F. Zhang (USA)

 

Senior Editorial Board

  • P. Bartos (Czech Republic)
  • H. Bürstmayr (Austria)
  • J. Johnson (USA)
  • Z. Kertész (Hungary)
  • G. Kimber (USA)
  • J. Matuz (Hungary)

Cereal Research Communications
Cereal Research Non-Profit Ltd. Company
Address: P.O. Box 391, H-6701 Szeged, Hungary
Phone: +36 62 435 235
Fax: +36 62 420 101
E-mail: crc@gk-szeged.hu

Indexing and Abstracting Services:

  • AgBiotechNet Abstracts
  • Agricola
  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Current Contents/Agriculture
  • Biology & Environmental Sciences
  • ISI Web of Science/li>
  • Science Citation Index Expanded
  • SCOPUS

 

Cereal Research Communications
Language English
Size B5
Year of
Foundation
1973
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3720 (Print)
ISSN 1788-9170 (Online)