Activities of superoxide dismutase (SOD), guaiacol peroxidase (PX), glutahione peroxidase (GPX) and catalase (CAT) as well as formation of malondialdehyde (MDA) and liposoluble fluorescent compounds (LFC) in leaves of 20 wheat genotypes, parents and hybrids of F1 and F2 generation were examined. The aim was to determine inheriting pattern of investigated parameters and relation between antioxidative enzyme activities and lipid peroxidation and LFC formation. No consistent role of inheritance of antioxidant parameters was found. Investigated genotypes and hybrids, among themselves, differed significantly in antioxidative enzyme activities and MDA and LFC content. Results presented indicate that high contents of MDA and LFC are associated with low activities of antioxidative enzymes. Also, relatively small quantities of MDA and LFC are associated with high activities of SOD and CAT.
Acevedo, A., Diaz Paleo, A., Federico, M. L., 2001. Catalase deficiency reduces survival and pleiotropically affects agronomic performance in field-grown barley progeny. Plant Science 160:847–855
Federico M. L. , 'Catalase deficiency reduces survival and pleiotropically affects agronomic performance in field-grown barley progeny ' (2001 ) 160 Plant Science : 847 -855 .
Chiu, D.T.Y., Stults, F.H., Tappel, A.L., 1976. Purification and properties of rat lung soluble glutathione peroxidase. Biochim. Biophys. Acta 445:558–567
Tappel A.L. , 'Purification and properties of rat lung soluble glutathione peroxidase ' (1976 ) 445 Biochim. Biophys. Acta : 558 -567 .
Foyer, C.H., Descourvières, P., Kunert, K.J., 1994. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523
Kunert K.J. , 'Protection against oxygen radicals: an important defence mechanism studied in transgenic plants ' (1994 ) 17 Plant Cell Environ : 507 -523 .
Lascano, H.R., Melchiorre, M.N., Luna, C.M., Trippi, V.S., 2003. Effect of photooxidativestress induced by paraquat in two wheat cultivars with differential tolerance to water stress. Plant Sci. 164:841–848
Trippi V.S. , 'Effect of photooxidativestress induced by paraquat in two wheat cultivars with differential tolerance to water stress ' (2003 ) 164 Plant Sci. : 841 -848 .
Matkovics, B., Novak, R., Hanh H.D., Szabo L., Varga I., 1977. A comparative study of some more important experimental animal peroxide metabolism enzymes. Comp Biochem Physiol B 56:31–34
Varga I. , 'A comparative study of some more important experimental animal peroxide metabolism enzymes ' (1977 ) 56 Comp Biochem Physiol B : 31 -34 .
Merzlyak, M.N., Kovrizhnih, V.A., 1984. Lipid-phenolic radical adducts as a pausible mechanism of „plant ageing” pigment formation. Gen. Physiol. Biophys. 3:497–505
Kovrizhnih V.A. , 'Lipid-phenolic radical adducts as a pausible mechanism of „plant ageing” pigment formation ' (1984 ) 3 Gen. Physiol. Biophys. : 497 -505 .
Merzlyak, M.N., Pogosian, S.I., Runiantseva, V.B., Sobolov, A.S., Shevchenko, N.V., Gusev, M.V., 1982. Chromatographic and spectral characteristics of liposoluble fluorescent compounds accumulated during damaging and aging of plants. Biokhimiia 47: 425–433
Gusev M.V. , 'Chromatographic and spectral characteristics of liposoluble fluorescent compounds accumulated during damaging and aging of plants ' (1982 ) 47 Biokhimiia : 425 -433 .
Misra, H.P., Fridovich, I., 1972. The role of superoxide anion in the autooxidation of ephinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247:3170–3175.
Fridovich I. , 'The role of superoxide anion in the autooxidation of ephinephrine and a simple assay for superoxide dismutase ' (1972 ) 247 J. Biol. Chem. : 3170 -3175 .
Pitcher, L.H., Zilinskas, B.A., 1996. Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis. Plant Physiol 110:583–588
Zilinskas B.A. , 'Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis ' (1996 ) 110 Plant Physiol : 583 -588 .
Placer, Z.A., Cushman, L.L., Johnson, B.C., 1968. Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems, J. Anal. Biochem. 16:359–364
Johnson B.C. , 'Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems ' (1968 ) 16 J. Anal. Biochem. : 359 -364 .
Roshchina, V.V., 2003. Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction. Journal of Fluorescence 13:403–420
Roshchina V.V. , 'Autofluorescence of plant secreting cells as a biosensor and bioindicator reaction ' (2003 ) 13 Journal of Fluorescence : 403 -420 .
Scandalios J.G., 1997. Molecular biology of the antioxidant defense genes encoding catalases and superokside dismutases in maize, in: K.K. Hatzios, (Ed.), Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants, Kluwer Academic Publishers, The Netherlands, pp. 97–108.
Scandalios J.G. , '', in Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants , (1997 ) -.
Simon, L.M., Fatrai, Z., Jonas, D.E., Matkovics, B., 1974. Study of peroxide metabolism enzymes during development of Phaseolus vulgaris L., Biochem. Physiol. Pflanzen, Bd. 166:387–392
Matkovics B. , 'Study of peroxide metabolism enzymes during development of Phaseolus vulgaris L. ' (1974 ) 166 Biochem. Physiol. Pflanzen : 387 -392 .
Stajner, D., Gasic, O., Kraljevic-Balalic, M., 1993. Changes in antioxidant enzyme activities and pigment content during development of wheat, in: Gy. Mózsik, I. Emerit, J. Fehér, B. Matkovics, Á. Vincze (Eds.), Oxygen Free Radicals and Scavengers in the Natural Sciences, Akadémiai Kiadó, Budapest, pp. 45–56.
Kraljevic-Balalic M. , '', in Oxygen Free Radicals and Scavengers in the Natural Sciences , (1993 ) -.
Ye, B., Gressel, J., 2000. Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis . Planta 211:50–61
Gressel J. , 'Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis ' (2000 ) 211 Planta : 50 -61 .