View More View Less
  • 1 CIMMYT P.O. Box 6-641 06600 Mexico D.F. Mexico
  • 2 ENESAD 26 Boulevard Dr. Petitjean BP 87999 21079 Dijon cedex France
Restricted access

In the tropics, maize ( Zea mays L.) is often grown under low N conditions. Information on the respective role of N uptake and partitioning at anthesis in determining grain yield under low N is scarce. Senescence traits have been proposed as secondary traits to select for low N tolerance, but the stability of their association with yield under different environmental conditions has been rarely described. In the present study we analyzed the associations between grain yield, N uptake and partitioning at anthesis, dry matter matter partitioning, and senescence traits during two seaons in QPM (quality protein maize) hybrids. Association between grain yield and N uptake at anthesis, when found, was mainly explained by a close relationship between grain yield and above-ground biomass. No relationship was found between grain yield and N partitioning at anthesis. In both seasons grain yield was significantly positively associated with ear to above-ground biomass and ear to tassel weight ratios. The magnitude of the correlation between grain yield and senescence traits highly depended on climatic conditions.

  • Bänziger M., Edmeades G.O., Lafitte H.R. 1999. Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Sci. 39: 1035–1040.

    Lafitte H.R. , 'Selection for drought tolerance increases maize yields across a range of nitrogen levels ' (1999 ) 39 Crop Sci. : 1035 -1040.

    • Search Google Scholar
  • Bänziger M., Edmeades G.O., Lafitte H.R. 2002. Physiological mechanisms contributing to the increased N stress tolerance of tropical maize selected for drought tolerance. Field Crops Res. 75: 223–233.

    Lafitte H.R. , 'Physiological mechanisms contributing to the increased N stress tolerance of tropical maize selected for drought tolerance ' (2002 ) 75 Field Crops Res. : 223 -233.

    • Search Google Scholar
  • Bänziger M., Lafitte H.R. 1997. Efficiency of secondary traits for improving maize for low-nitrogen target environments. Crop Sci. 37: 1110–1117.

    Lafitte H.R. , 'Efficiency of secondary traits for improving maize for low-nitrogen target environments ' (1997 ) 37 Crop Sci. : 1110 -1117.

    • Search Google Scholar
  • Below F.E., Cazerta J.O., Seebauer J.R. 2000. Carbon/nitrogen interactions during ear and kernel development in maize. In: Westgate M.E and Boote K. (eds.), Physiology and modelling kernel set in maize. CSSA Special Publication 29, Madison, pp. 15–24.

  • Binford G.D., Blackmer A.M. 1993. Visually rating the nitrogen status of corn. J. Prod. Agric. 6: 41–46.

    Blackmer A.M. , 'Visually rating the nitrogen status of corn ' (1993 ) 6 J. Prod. Agric. : 41 -46.

    • Search Google Scholar
  • Dowswell C.R., Paliwal R.L., Cantrell R.P. 1996. Maize in the Third World, Boulder, Colorado, Westview Press.

    Cantrell R.P. , '', in Maize in the Third World , (1996 ) -.

  • Dwyer L.M., Tollenaar M., Houwing L. 1991. A nondestructive method to monitor leaf greenness in corn. Can. J. Plant Sci. 71: 505–509.

    Houwing L. , 'A nondestructive method to monitor leaf greenness in corn ' (1991 ) 71 Can. J. Plant Sci. : 505 -509.

    • Search Google Scholar
  • Fox R.H., Piekielek W.P., McNeal K.E. 2000. Comparison of late-season diagnostic tests for predicting nitrogen status of corn. Agron. J. 93: 590–597.

    McNeal K.E. , 'Comparison of late-season diagnostic tests for predicting nitrogen status of corn ' (2000 ) 93 Agron. J. : 590 -597.

    • Search Google Scholar
  • Francis D.D., Schepers J.S., Vigil M.F. 1993. Post-anthesis nitrogen loss from corn. Agron. J. 85: 659–663.

    Vigil M.F. , 'Post-anthesis nitrogen loss from corn ' (1993 ) 85 Agron. J. : 659 -663.

  • Jacobs B.C., Pearson C.J. 1991. Potential yield of maize, determined by rates of growth and development of ears. Field Crops Res. 27: 281–298.

    Pearson C.J. , 'Potential yield of maize, determined by rates of growth and development of ears ' (1991 ) 27 Field Crops Res. : 281 -298.

    • Search Google Scholar
  • Lafitte H.R., Edmeades G.O. 1994. Improvement for tolerance to low soil nitrogen in tropical maize. I. Selection criteria. Field Crops Res. 39: 1–14.

    Edmeades G.O. , 'Improvement for tolerance to low soil nitrogen in tropical maize. I. Selection criteria ' (1994 ) 39 Field Crops Res. : 1 -14.

    • Search Google Scholar
  • Lafitte H.R., Edmeades G.O. 1995. Stress tolerance in tropical maize is linked to constitutive changes in ear growth characteristics. Crop Sci. 35: 820–826.

    Edmeades G.O. , 'Stress tolerance in tropical maize is linked to constitutive changes in ear growth characteristics ' (1995 ) 35 Crop Sci. : 820 -826.

    • Search Google Scholar
  • Machado A.T., Magalhães J.R. 1995. Melhoramento de milho para uso eficiente de N sob condições de estresse. In: Simpósio internacional sobre estresse ambiental: o milho en perspectiva, Sete Lagoas, Brasil. Embrapa-CNPMS, pp. 321–342.

  • Machado A.T., Sodek L., Fernandes M.S. 2001. N-partitioning, nitrate reductase and glutamine synthase activities in two contrasting varieties of maize. Pesq. Agropec. Bras. 36: 249–256.

    Fernandes M.S. , 'N-partitioning, nitrate reductase and glutamine synthase activities in two contrasting varieties of maize ' (2001 ) 36 Pesq. Agropec. Bras. : 249 -256.

    • Search Google Scholar
  • McCown R.L., Keating B.A., Probert M.E., Jones R.K. 1992. Strategies for sustainable crop production in semi-arid Africa. Outlook Agric. 21: 21–31.

    Jones R.K. , 'Strategies for sustainable crop production in semi-arid Africa ' (1992 ) 21 Outlook Agric. : 21 -31.

    • Search Google Scholar
  • McCullough D.E, Girardin P., Mihajlovic M., Aguilera A., Tollenaar M. 1994. Influence of N supply on development and dry matter accumulation of an old and new maize hybrid. Can. J. Plant Sci. 74: 471–477.

    Tollenaar M. , 'Influence of N supply on development and dry matter accumulation of an old and new maize hybrid ' (1994 ) 74 Can. J. Plant Sci. : 471 -477.

    • Search Google Scholar
  • Mertz E.T., Bates L.S., Nelson O.E. 1964. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145: 279–280.

    Nelson O.E. , 'Mutant gene that changes protein composition and increases lysine content of maize endosperm ' (1964 ) 145 Science : 279 -280.

    • Search Google Scholar
  • Monneveux P., Sanchez C., Beck D., Edmeades G.O. 2005a. Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Sci. 46: 180–191.

    Edmeades G.O. , 'Drought tolerance improvement in tropical maize source populations: evidence of progress ' (2005 ) 46 Crop Sci. : 180 -191.

    • Search Google Scholar
  • Monneveux P., Zaïdi P.H., Sanchez C. 2005b. Population density and low nitrogen affect yield-associated trait in tropical maize. Crop Science 45: 535–545.

    Sanchez C. , 'Population density and low nitrogen affect yield-associated trait in tropical maize ' (2005 ) 45 Crop Science : 535 -545.

    • Search Google Scholar
  • Pan W.L., Cambereto J.J., Jackson W.A., Moll R.H. 1986. Utilization of previously accumulated and concurrently absorbed nitrogen during reproductive growth in maize. Plant Physiol. 82: 247–253.

    Moll R.H. , 'Utilization of previously accumulated and concurrently absorbed nitrogen during reproductive growth in maize ' (1986 ) 82 Plant Physiol. : 247 -253.

    • Search Google Scholar
  • Peoples M.B., Herridge D.F., Ladha J.K. 1995. Biological N fixation: an efficient source of N for sustainable agricultural production. Plant Soil 174: 3–28.

    Ladha J.K. , 'Biological N fixation: an efficient source of N for sustainable agricultural production ' (1995 ) 174 Plant Soil : 3 -28.

    • Search Google Scholar
  • Pixley K.V., Bjarnason M.S. 1993. Stability of grain yield, endosperm modification, and protein quality of hybrid and open-pollinated quality protein maize (QPM) cultivars. Crop Sci. 42: 1882–1890.

    Bjarnason M.S. , 'Stability of grain yield, endosperm modification, and protein quality of hybrid and open-pollinated quality protein maize (QPM) cultivars ' (1993 ) 42 Crop Sci. : 1882 -1890.

    • Search Google Scholar
  • Presterl T., Groh S., Landbeck M., Seitz G., Schmidt W., Geiger H.H. 2002. Nitrogen uptake and utilization efficiency of European maize hybrids developed under conditions with low and high nitrogen input. Plant Breeding 121: 480–486.

    Geiger H.H. , 'Nitrogen uptake and utilization efficiency of European maize hybrids developed under conditions with low and high nitrogen input ' (2002 ) 121 Plant Breeding : 480 -486.

    • Search Google Scholar
  • Rajcan I., Tollenaar M. 1999. Source:sink ratio and leaf senescence in maize: I. Dry matter accumulation and partitioning during grain filling. Field Crop Res 60: 245–253.

    Tollenaar M. , 'Source:sink ratio and leaf senescence in maize: I. Dry matter accumulation and partitioning during grain filling ' (1999 ) 60 Field Crop Res : 245 -253.

    • Search Google Scholar
  • SAS Institute, 1987. SAS/STAT user’s guide, version 6. SAS Inst., Inc., Cary, NC.

    '', in SAS/STAT user’s guide, version 6 , (1987 ) -.

  • Srinivasan G., Cordova H., Vergara N., Rodríguez E., Urrea C. 2002. Potential of quality protein maize for promoting nutritional security in Asia. In: New directions for a diverse planet: Proceedings of the 4th Int. Crop Science Congress, Brisbane, Australia.

    Urrea C. , '', in New directions for a diverse planet: Proceedings of the 4th Int. , (2002 ) -.

  • Ta C.T., Weiland R.T. 1992. Nitrogen partitioning in maize during ear development. Crop Sci. 32: 443–451.

    Weiland R.T. , 'Nitrogen partitioning in maize during ear development ' (1992 ) 32 Crop Sci. : 443 -451.

    • Search Google Scholar
  • Tollenaar M., Dwyer L.M., Stewart DD.W. 1992. Ear and kernel formation in maize hybrids representing three decades of grain yield improvement in Ontario. Crop Sci. 32: 432–438.

    Stewart D.D.W. , 'Ear and kernel formation in maize hybrids representing three decades of grain yield improvement in Ontario ' (1992 ) 32 Crop Sci. : 432 -438.

    • Search Google Scholar
  • Tsai C.Y., Huber D.M., Warren H.L., Lyznik A. 1991. Nitrogen uptake and redistribution during maturation of maize hybrids. J. Sci. Food Agric. 57: 175–187.

    Lyznik A. , 'Nitrogen uptake and redistribution during maturation of maize hybrids ' (1991 ) 57 J. Sci. Food Agric. : 175 -187.

    • Search Google Scholar
  • Uhart S.A., Andrade F.H. 1995. Nitrogen deficiency in maize: I. Effects on crop growth, development, dry matter partitioning, and kernel set. Crop Sci. 35: 1376–1383.

    Andrade F.H. , 'Nitrogen deficiency in maize: I. Effects on crop growth, development, dry matter partitioning, and kernel set ' (1995 ) 35 Crop Sci. : 1376 -1383.

    • Search Google Scholar
  • van Beem J., Smith M.E., Zobel R.W. 1998. Estimating root mass in maize using a portable capacitance meter. Agron. J. 90: 566–570.

    Zobel R.W. , 'Estimating root mass in maize using a portable capacitance meter ' (1998 ) 90 Agron. J. : 566 -570.

    • Search Google Scholar
  • Wolfe D.W., Henderson D.W., Hsiao T.C., Alvino A. 1988. Interactive water and nitrogen effects on senescence of maize. I. Leaf area duration, nitrogen distribution, and yield. Agron. J. 80: 859–864.

    Alvino A. , 'Interactive water and nitrogen effects on senescence of maize. I. Leaf area duration, nitrogen distribution, and yield ' (1988 ) 80 Agron. J. : 859 -864.

    • Search Google Scholar