Data evaluating the growth promoting effects of Azospirillum on wheat seedlings according to the inoculum level/root colonization effectiveness (number of bacterial cells), is scarce. Uniform 1-cm size, 72-h old wheat seedlings grown in the dark at 22 °C were inoculated with: i) 10 3 , 10 5 , 10 7 and 10 8A. brasilense cells per T. aestivum cv. ProINTA Federal seedling; ii) 10 2 , 10 5 and 10 8A. brasilense cells per T. durum cv. Buck Topacio seedling; iii) 10 6 heat killed bacteria (HKB) cells per cultivar seedling; iv) phosphate buffer pH 6.8 (NI) as control seedlings for both cultivars. Afterwards, seedling growth proceeded in water in the dark at 22 °C for another 48 h. Alive or dead Azospirillum cells were suspended in phosphate buffer pH 6.8. Root and shoot growth were determined measuring the length and projected area of their digitalized images. When treated with inocula concentrations ranging from 10 2 to 10 5 cells per seedling, both Triticum species reached a maximum level of colonization harboring 10 6 to 10 7 cells per seedling. No differences could be detected between NI and HKB treated seedlings for both Triticum species. Triticum aestivum cv. ProINTA Federal seedlings reached the maximum growth promotion when roots were colonized with a number of bacterial cells ranging from 5 · 10 6 to 1.5 · 10 8 per seedling. Triticum durum cv. Buck Topacio seedlings showed maximum growth promotion when 3.3 · 10 7 cells were present in their roots. Higher values of colonization showed no growth promoting effects with respect to the controls. It may be concluded that in these experimental conditions the optimum inoculum concentration is 5 · 10 5 cells per seedling for both T. aestivum cv. ProINTA Federal and T. durum cv. Buck Topacio.
Alvarez, M.I., Sueldo, R.J., Barassi, C.A. 1996. Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress. Cereal Res. Comm. 24 :101–107.
Barassi C.A. , 'Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress ' (1996 ) 24 Cereal Res. Comm. : 101 -107 .
Arunakumari, A., Lamm, R.B., Neyra-Estens, C.A. 1992. Changes in cell surface properties of azospirilla in relation to cell pleomorphism and aggregation. Symbiosis 13 :291–305.
Neyra-Estens C.A. , 'Changes in cell surface properties of azospirilla in relation to cell pleomorphism and aggregation ' (1992 ) 13 Symbiosis : 291 -305 .
Bashan, Y. 1993. Potential use of Azospirillum as biofertilizer. Turrialba 43 :286–291.
Bashan Y. , 'Potential use of Azospirillum as biofertilizer ' (1993 ) 43 Turrialba : 286 -291 .
Bashan, Y., Holguin, G., de-Bashan, L.E. 2004. Azospirillum -plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can. J. Microbiol. 50 :521–577.
de-Bashan L.E. , 'Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003) ' (2004 ) 50 Can. J. Microbiol. : 521 -577 .
Casanovas, E.M., Barassi, C.A., Sueldo, R.J. 2002. Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res. Comm. 30 :343–350.
Sueldo R.J. , 'Azospirillum inoculation mitigates water stress effects in maize seedlings ' (2002 ) 30 Cereal Res. Comm. : 343 -350 .
Casanovas, E.M., Barassi, C.A., Andrade, F., Sueldo, R.J. 2003. Azospirillum -inoculated maize plant responses to irrigation restraints imposed during flowering. Cereal Res. Comm. 31 :395–402.
Sueldo R.J. , 'Azospirillum-inoculated maize plant responses to irrigation restraints imposed during flowering ' (2003 ) 31 Cereal Res. Comm. : 395 -402 .
Chen, C., Bauske, E.M., Musson, G., Rodríguez-Cabaña, R., Kloepper, J. 1995. Biological control of Fusarium on cotton by use of endophytic bacteria. Biol. Control 5 :83–91.
Kloepper J. , 'Biological control of Fusarium on cotton by use of endophytic bacteria ' (1995 ) 5 Biol. Control : 83 -91 .
Creus, C.M., Sueldo, R.J., Barassi, C.A. 1997. Shoot growth and water status in Azospirillum -inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol. Biochem. 35 :939–944.
Barassi C.A. , 'Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses ' (1997 ) 35 Plant Physiol. Biochem. : 939 -944 .
Creus, C.M., Sueldo, R.J., Barassi, C.A. 1998. Water relations in Azospirillum -inoculated wheat seedlings under osmotic stress. Can. J. Bot. 76 :238–244.
Barassi C.A. , 'Water relations in Azospirillum-inoculated wheat seedlings under osmotic stress ' (1998 ) 76 Can. J. Bot. : 238 -244 .
Creus, C.M., Sueldo, R.J., Barassi, C.A. 2004. Water relations and yield in Azospirillum -inoculated wheat exposed to drought in the field. Can. J. Bot. 82 :273–281.
Barassi C.A. , 'Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field ' (2004 ) 82 Can. J. Bot. : 273 -281 .
De Troch, P., Vanderleyden, J. 1996. Surface properties and motility of Rhizobium and Azospirillum in relation to plant root attachment. Microb. Ecol. 32 :149–169.
Vanderleyden J. , 'Surface properties and motility of Rhizobium and Azospirillum in relation to plant root attachment ' (1996 ) 32 Microb. Ecol. : 149 -169 .
Dobbelaere, S., Croonenborghs, A., Thys, A., Vande Broek, A., Vanderleyden, J. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production in wheat. Plant Soil 212 :155–164.
Vanderleyden J. , 'Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production in wheat ' (1999 ) 212 Plant Soil : 155 -164 .
Dufrêne, I.F., Vermeiren, H., Vanderleyden, J., Rouxhet, P.G. 1996. Direct evidence for the involvement of extracellular proteins in the adhesion of Azospirillum brasilense . Microbiology 142 :855–865.
Rouxhet P.G. , 'Direct evidence for the involvement of extracellular proteins in the adhesion of Azospirillum brasilense ' (1996 ) 142 Microbiology : 855 -865 .
Gan, Y., Stobbe, E.H., Moes, J. 1992. Relative date of wheat seedling emergence and its impact on grain yield. Crop Sci. 32 :1275–1281.
Moes J. , 'Relative date of wheat seedling emergence and its impact on grain yield ' (1992 ) 32 Crop Sci. : 1275 -1281 .
Guddanti, S., Chambers, J.L. 1993. GSRoot, Version 5.00. Automated Root Length Measurement Program. Users Manual. Lousiana State University, Agricultural Center.
Chambers J.L. , '', in Users Manual , (1993 ) -.
Hallmann, J., Quadt-Hallmann, A., Mahaffee, W.F., Kloepper, J.W. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43 :895–914.
Kloepper J.W. , 'Bacterial endophytes in agricultural crops ' (1997 ) 43 Can. J. Microbiol. : 895 -914 .
Jacoud, C., Faure, D., Wadoux, P., Bally, R. 1998. Development of a strain-specific probe to follow inoculated Azospirillum lipoferum CRT1 under field conditions and enhancement of maize root development by inoculation. FEMS Microbiol Ecol. 27 :43–51.
Bally R. , 'Development of a strain-specific probe to follow inoculated Azospirillum lipoferum CRT1 under field conditions and enhancement of maize root development by inoculation ' (1998 ) 27 FEMS Microbiol Ecol. : 43 -51 .
Okon, Y., Itzigsohn, R. 1995. The development of Azospirillum as commercial inoculant for improving crop yields. Biotech. Adv. 13 :415–424.
Itzigsohn R. , 'The development of Azospirillum as commercial inoculant for improving crop yields ' (1995 ) 13 Biotech. Adv. : 415 -424 .
Okon, Y., Labandera-González, C.A. 1994. Agronomic applications of Azospirillum brasilense: an evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 26 :1591–1601.
Labandera-González C.A. , 'Agronomic applications of Azospirillum brasilense: an evaluation of 20 years worldwide field inoculation ' (1994 ) 26 Soil Biol. Biochem. : 1591 -1601 .
Postgate, J.R. 1969. Viable counts and viability. In: Norris, J.R., Ribbons, E.W. (eds), Methods in Microbiology. Academic Press, New York, pp. 611–628.
Postgate J.R. , '', in Methods in Microbiology , (1969 ) -.
SAS Institute, 2000. The SAS OnlineDoc system for Windows. Release 8.2. SAS Institue Inc., Cary, New Carolina.
'', in The SAS OnlineDoc system for Windows , (2000 ) -.