View More View Less
  • 1 Addis Ababa University Department of Biology Addis Ababa Ethiopia
  • 2 Ethiopian Institute of Agricultural Research Debre-Zeit Ethiopia
  • 3 Haryana Agricultural University Campus COA Kaul 136021 India
Restricted access

Durum wheat is a good source of protein. A grain protein content of 13% for durum is a standard in quality throughout the grain industry (Riley et al. 1998). Protein content like other traits in wheat is known to be affected by genetic and environmental factors mainly location (Bement et al. 2003). In this study we evaluated a set of 25 genotypes comprising introduction from CIMMYT and advanced lines developed through hybridization by the Ethiopian National Durum Wheat Research Project (NDWP) for protein content over six testing locations, representing the wheat agro-ecologies in the country. The experiments were conducted in a randomised complete block design (RBD) with three replications each. Plot size was kept at 2 m 2 . Grain protein content was analyzed following Kjeldahl method (A.A.C.C. 1983). Stability analysis was done according to Eberhart and Russel (1966) model and effect of locations and its interaction with genotypes were estimated following additive main effects and multiplicative interaction (AMMI) model. The mean grain protein content varied from 11.61 to 13.52% among the genotypes. Only three genotypes, namely CD98206, DZ3117 and DZ-04-118 attained higher grain protein content than standard 13.00%. Stability analysis revealed that all but three genotypes were observed to be predictable. DZ 2212-1BS was found suitable for favorable environments. Genotype CD97383 was found sensitive to change in environment. Eight genotypes were identified as stable. Genotypes DZ3117 was found to be the best having maximum protein content recorded at AlemTena location and higher yield with stable performance across locations. AMMI analysis revealed that the first two significant IPCA scores together explained 73.55% of the total interaction variance. Biplot graphical analysis showed Alem Tena as the best location followed by Debre Zeit and Minjar in terms of average protein content of genotypes. Genotype DZ1669-1AK scored zero and could be considered as stable and wide adaptable having protein content higher than the general mean. The graphical analysis of IPCA 1 and IPCA 2 further revealed that this genotype was relatively close to origin zero. Genotype DZ-04-118 was adapted to Debre Zeit and Minjar while a large numbers of genotypes with negative IPCA score were adapted to Akaki and Chefe Donsa locations. Genotype DZ3117 had specific adaptability to Alem Tena location. High protein but low grain yield at Alem Tena may be due to the drought occurrence during grain filling period.

  • A.A.C.C. (American Association of Cereal Chemists) 1983. ’Approved methods’ A.A.C.C., St. Paul, MN.

    '', in Approved methods , (1983 ) -.

  • Adugna, W., Labuschagne, M.T. 2002. G × E interactions and phenotypic stability analyses of linseed in Ethiopia. Plant Breeding 121 :66–71

    Labuschagne M.T. , 'G × E interactions and phenotypic stability analyses of linseed in Ethiopia ' (2002 ) 121 Plant Breeding : 66 -71.

    • Search Google Scholar
  • Agrobase 20. 1999. Agronomix software, Inc. Canada.

  • Banziger, M., Feil, B., Schmid, J.E., Stamp, P. 1992. Genotypic variation in grain nitrogen content of wheat as affected by mineral nitrogen supply in the soil. Eur. J. Agron. 1 :155–162.

    Stamp P. , 'Genotypic variation in grain nitrogen content of wheat as affected by mineral nitrogen supply in the soil ' (1992 ) 1 Eur. J. Agron. : 155 -162.

    • Search Google Scholar
  • Belay, S., Struik, P.C., Nachit, M.M., Peacock, J.M. 1993. Ontogenetic analysis of yield components and yield stability of durum wheat in water limited environments. Euphytica 71 :211–219.

    Peacock J.M. , 'Ontogenetic analysis of yield components and yield stability of durum wheat in water limited environments ' (1993 ) 71 Euphytica : 211 -219.

    • Search Google Scholar
  • Bement, G., Ameha, Y., Alemayehu, Z., Jemanesh, K., Tekalign, T., Bekele, M. 2003. Fertilizer N effects on yield and grain quality of durum wheat. Trop Agric. (Trinidad) 80 :146–151.

    Bekele M. , 'Fertilizer N effects on yield and grain quality of durum wheat ' (2003 ) 80 Trop Agric. (Trinidad) : 146 -151.

    • Search Google Scholar
  • Budak, N. 2000. Heritability, Correlation and G × E Interactions of grain yield, test weight and protein content in durum wheat. Turkish Journal of Field Crops 5 (2):1–6.

    Budak N. , 'Heritability, Correlation and G × E Interactions of grain yield, test weight and protein content in durum wheat ' (2000 ) 5 Turkish Journal of Field Crops : 1 -6.

    • Search Google Scholar
  • Craffi, M., Tozzi, L., Borghi, B., Corbellini, M., Lafiandra, D. 1996. Effect of heat shock during grain filling on the gluten composition of bread wheat. J. Cereal Sci. 24 :91–101.

    Lafiandra D. , 'Effect of heat shock during grain filling on the gluten composition of bread wheat ' (1996 ) 24 J. Cereal Sci. : 91 -101.

    • Search Google Scholar
  • CSA (Central Statistical Authority) 2001. Time series data on area, production and yield of major crops. Statistical Bulletin. Addis Ababa, Ethiopia. CSA. pp. 76.

  • Eberhart, S.A., Russel, W.A. 1966. Stability parameters for comparing varieties. Crop Sci. 6 :36–40.

    Russel W.A. , 'Stability parameters for comparing varieties ' (1966 ) 6 Crop Sci. : 36 -40.

  • Efrem, B., Pena, R.J., Demissie, M. 2000. Quality of Ethiopian Durum Wheat Cultivars. The Eleventh Regional Wheat Workshop for Eastern, Central and Southern Africa. Addis Ababa, Ethiopia, 18–22 September, International Maize and Wheat Improvement Centre, Addis Ababa, Ethiopia, pp. 18–22.

    Demissie M. , '', in Addis Ababa, Ethiopia, 18–22 September, International Maize and Wheat Improvement Centre , (2000 ) -.

  • FAO (Food and Agriculture Organization of the United Nation, Rome), 2002. FAO Year Book. Statistics Series No. 135.

  • Fares, C., Alessandro, M., Gallo, A. 1993. Grain quality of durum wheat as affected by environment and cropping practices. Agron. J. 27 :117–124.

    Gallo A. , 'Grain quality of durum wheat as affected by environment and cropping practices ' (1993 ) 27 Agron. J. : 117 -124.

    • Search Google Scholar
  • Gauch, H.G. 1988. Model selection and validation for yield trials with interaction. Biometrics 44 :705–715.

    Gauch H.G. , 'Model selection and validation for yield trials with interaction ' (1988 ) 44 Biometrics : 705 -715.

    • Search Google Scholar
  • Metho, L.A. Hammes, P.S., De Beer, J.M., Groeneveld, H.T. 1997. Interaction between cultivar and soil fertility on grain yield, yield components and grain nitrogen content of wheat. S. Afr. J. Plant Soil 14 :158–164.

    Groeneveld H.T. , 'Interaction between cultivar and soil fertility on grain yield, yield components and grain nitrogen content of wheat ' (1997 ) 14 S. Afr. J. Plant Soil : 158 -164.

    • Search Google Scholar
  • Riley, E.A., Thompson, T.L., White, S.A., Ottman, M.J. 1998. Late season tissue tests for critical grain protein content in durum, Maricopa. In: Ottman, M. (ed.), Forage and Grain, A college of Agriculture Report Series, University of Arizona, Tucson, Arizona, pp. 43–50.

    Ottman M.J. , '', in Forage and Grain, A college of Agriculture Report Series , (1998 ) -.

  • Sertsu, S., Bekele, T. 2000. Procedures for Soil and Plant Analysis. National Soil Research Center, EARO, Addis Ababa, pp. 73–76.

    Bekele T. , '', in National Soil Research Center , (2000 ) -.

  • Simmonds, D.H. 1989. Inherent Quality Factors in Wheat. Wheat and Wheat Quality in Australia, CSIRO, Australia, pp. 31–61.

    Simmonds D.H. , '', in Wheat and Wheat Quality in Australia , (1989 ) -.

  • Tesfaye T., Getachew, B. 1991. Aspects of Ethiopian tetraploid wheats with emphasis on durum wheat genetic and breeding research. In: Gebre-Mariam, H., Tanner, D.G., Hulluka, M. (eds): Wheat Research in Ethiopia: A historical perspective. IAR/CIMMYT, Addis Ababa, pp. 47–71.

    Getachew B. , '', in Wheat Research in Ethiopia: A historical perspective , (1991 ) -.

  • Tesfaye T., Seifu, T., Getachew, B., Eferem, B., Demissie, M. 1998. Stability of performance of tetraploid wheat landraces in Ethiopian highland. Euphytica 102 :301–308.

    Demissie M. , 'Stability of performance of tetraploid wheat landraces in Ethiopian highland ' (1998 ) 102 Euphytica : 301 -308.

    • Search Google Scholar