Senescence of plant tissues is a natural process that may be accelerated by unfavourable environmental factors, including disbalanced mineral nutrition. During plant senescence, the concentration of reactive oxygen species (ROS) increases in the cells, whereas the concentration of cytokinins declines. Negative correlation between ROS, such as hydroxyl radical ( · OH), and concentration of cytokinins triggers the question whether the addition of cytokinins can reduce ROS production and/or its concentration. This would also reduce the level of lipid peroxidation (LP) in the senescing tissue, which is the final phase in the destruction of cell membranes by ROS.With the aim to address these questions, the effects of cytokinins (trans-zeatin, TZ, and benzyladenine, BA) on the concentration of · OH and LP were studied in wheat subjected to nitrogen deficiency. Foliar application of TZ reduced the concentration of · OH and the intensity of LP in the leaves of young wheat plants insufficiently supplied with nitrogen.
Berlett, B.S., Stadtman, E.R. 1997. Protein oxidation in aging, disease, and oxidative stress. Am. Soc. Biochem. Mol. Biol. 272 :20313–20316.
Stadtman E.R. , 'Protein oxidation in aging, disease, and oxidative stress ' (1997 ) 272 Am. Soc. Biochem. Mol. Biol. : 20313 -20316 .
Cadenas, E. 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58 :79–110.
Cadenas E. , 'Biochemistry of oxygen toxicity ' (1989 ) 58 Annu. Rev. Biochem. : 79 -110 .
Cheesman, K.H., Beavis, A., Esterbaurer, H. 1988. Hydroxyl-radical-induced iron-catalysed degradation of 2-deoxyribose. Biochem. J. 252 :649–653.
Esterbaurer H. , 'Hydroxyl-radical-induced iron-catalysed degradation of 2-deoxyribose ' (1988 ) 252 Biochem. J. : 649 -653 .
Grossman, S., Leshem, Y.Y. 1978. Lowering of endogenous lipoxygenase activity in Pisum sativum foliage by cytokinin as related to senescence. Physiol. Plant. 43 :359–362.
Leshem Y.Y. , 'Lowering of endogenous lipoxygenase activity in Pisum sativum foliage by cytokinin as related to senescence ' (1978 ) 43 Physiol. Plant. : 359 -362 .
Haberer, G., Kieber, J.J. 2002. Cytokinins, new insights into a classic phytohormone. Plant Physiol. 128 :354–362.
Kieber J.J. , 'Cytokinins, new insights into a classic phytohormone ' (2002 ) 128 Plant Physiol. : 354 -362 .
Hai, D.Q., Kovacs, K., Matkovics, I., Matkovics, B. 1975. Properties of enzymes X. Peroxidase and superoxide dismutase contents of plant seeds. Biochem. Physiol. Pflanzen 167 :357–359.
Matkovics B. , 'Properties of enzymes X. Peroxidase and superoxide dismutase contents of plant seeds ' (1975 ) 167 Biochem. Physiol. Pflanzen : 357 -359 .
He, P., Osaki, M., Takebe, M., Shinano, T., Wasaki, J. 2005. Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J. Exp. Bot. 56 :1117–1128.
Wasaki J. , 'Endogenous hormones and expression of senescence-related genes in different senescent types of maize ' (2005 ) 56 J. Exp. Bot. : 1117 -1128 .
Hoagland, D.R., Arnon, D.I. 1950. The water-culture method for growing plants without soil. Calif. Agricul. Exp. Station Circ. 347 :1–32.
Arnon D.I. , 'The water-culture method for growing plants without soil ' (1950 ) 347 Calif. Agricul. Exp. Station Circ. : 1 -32 .
Huynh, L.N., VanToai, T., Streeter, J., Banowetz, G. 2005. Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin. J. Exp. Bot. 56 :1397–1407.
Banowetz G. , 'Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin ' (2005 ) 56 J. Exp. Bot. : 1397 -1407 .
Kuiper, D. 1988. Growth responses of Plantago major L. ssp. pleiosperma (Pilger) to changes in mineral supply: evidence for regulation by cytokinins. Plant Physiol. 87 :555–557.
Kuiper D. , 'Growth responses of Plantago major L. ssp. pleiosperma (Pilger) to changes in mineral supply: evidence for regulation by cytokinins ' (1988 ) 87 Plant Physiol. : 555 -557 .
Kuiper, D., Staal, M. 1987. The effect of exogenously applied plant growth substances on the physiological plasticity in Plantago major ssp. pleiosperma: responses of growth, shoot to root ratio and respiration. Physiol. Plant. 69 :651–658.
Staal M. , 'The effect of exogenously applied plant growth substances on the physiological plasticity in Plantago major ssp. pleiosperma: responses of growth, shoot to root ratio and respiration ' (1987 ) 69 Physiol. Plant. : 651 -658 .
Leshem, Y.Y., Grossman, S., Frimer, J., Ziv, J. 1979. Endogenous lipoxygenase control and lipid associated free radical scavenging as modes of cytokinin action in plant senescence retardation. In: Appelqvist, L.A., Liljenberg, C. (eds.) Advances in the Biochemistry and Physiology of Plant Lipids. Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands, pp. 193–198.
Ziv J. , '', in Advances in the Biochemistry and Physiology of Plant Lipids , (1979 ) -.
Leshem, Y.Y., Wurzburger, J., Grossman, S., Frimer, A.A. 1981. Cytokinin interaction with free radical metabolism and senescence: Effects on endogenous lipoxygenase and purine oxidation. Physiol. Plant. 53 :9–12.
Frimer A.A. , 'Cytokinin interaction with free radical metabolism and senescence: Effects on endogenous lipoxygenase and purine oxidation ' (1981 ) 53 Physiol. Plant. : 9 -12 .
Liu, X., Huang, B. 2002. Cytokinin effects on creeping bentgrass response to heat stress. Crop Sci. 42 :466–472.
Huang B. , 'Cytokinin effects on creeping bentgrass response to heat stress ' (2002 ) 42 Crop Sci. : 466 -472 .
Mok, D.W.S., Mok, M.C. 2001. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 :89–118.
Mok M.C. , 'Cytokinin metabolism and action ' (2001 ) 52 Annu. Rev. Plant Physiol. Plant Mol. Biol. : 89 -118 .
Placer, Z.A., Cushman, L.L., Johnson, B.C. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem. 16 :359–364.
Johnson B.C. , 'Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems ' (1966 ) 16 Anal. Biochem. : 359 -364 .
Polesskaya, O.G., Kashirina, E.I., Alekhina, N.D. 2004. Changes in the activity of antioxidant enzymes in wheat leaves and roots as a function of nitrogen source and supply. Russian J. Plant Physiol. 51 :615–620.
Alekhina N.D. , 'Changes in the activity of antioxidant enzymes in wheat leaves and roots as a function of nitrogen source and supply ' (2004 ) 51 Russian J. Plant Physiol. : 615 -620 .
Rahayu, Y.S., Walch-Liu, P., Neumann, G., Römheld, V., von Wirén, N., Bangerth, F. 2005. Root-derived cytokinins as long-distance signals for NO 3 − -induced stimulation of leaf growth. J. Exp. Bot. 56 :1143–1152.
Bangerth F. , 'Root-derived cytokinins as long-distance signals for NO3−-induced stimulation of leaf growth ' (2005 ) 56 J. Exp. Bot. : 1143 -1152 .
Smirnoff, N. 1995. Antioxidant systems and plant response to the environment. In: Smirnoff, N. (ed.) Environment and Plant Metabolism: Flexibility and Acclimation. BIOS Sci. Publ., Oxford, UK, pp. 217–243.
Smirnoff N. , '', in Environment and Plant Metabolism: Flexibility and Acclimation , (1995 ) -.
Štajner, D., Kevrešn, S., Gašić, O., Sarić, Z. 1997. Induction of antioxidant enzyme activities and pigment content in wheat as a result of nitrogen supply and inoculation with Azotobacter chroococcum . Cer. Res. Commun. 25 :1007–1010.
Sarić Z. , 'Induction of antioxidant enzyme activities and pigment content in wheat as a result of nitrogen supply and inoculation with Azotobacter chroococcum ' (1997 ) 25 Cer. Res. Commun. : 1007 -1010 .
Wingler, A., von Schaewen, A., Leegood, R.C., Lea, P.J., Quick, W.P. 1998. Regulation of leaf senescence by cytokinin, sugars, and light. Plant Physiol. 116 :329–335.
Quick W.P. , 'Regulation of leaf senescence by cytokinin, sugars, and light ' (1998 ) 116 Plant Physiol. : 329 -335 .