View More View Less
  • 1 International Center for Agricultural Research in the Dry Areas (ICARDA) P.O. Box 5466 Aleppo Syria
  • 2 Japan International Research Center for Agricultural Sciences (JIRCAS) Tsukuba, Ibaraki 305-8686 Japan
Restricted access

The drought stress in the rain-fed regions of West Asia and North Africa strongly depends on residual soil water available for the reproductive plant growth. The water uptake ability (i.e. water consumption per unit dry matter per day) of three synthetic-derived bread wheat genotypes, SYN-8, SYN-10 and SYN-15, and their parental variety Cham 6 were examined under controlled conditions. In addition, yield performance was compared under one artificial environment with supplemental irrigation and ten rain-fed environments at two locations over five cropping seasons. Large differences were found in water uptake ability among the four wheat genotypes; SYN-8 had the highest and SYN-10 the lowest ability. These differences were reflected in decrease of soil water content and increase of leaf temperature after irrigation. Under field conditions of supplemental irrigation, there were no significant differences in grain yield among genotypes Cham 6, SYN-8 and SYN-10; however, SYN-15 had lower grain yield due to low harvest index. Significant differences of the grain yield were found between SYN-8 and SYN-10 grown in rain-fed conditions. Lower water uptake ability was associated with higher grain yield; this speculates that intensive extraction of water from soil during vegetative growth might increase biomass production, but leave inadequate available soil moisture for reproductive growth and grain production. The balancing of water consumption by plants with stored soil moisture over the whole growing period is a major attribute of drought adaptation in these synthetic-derived wheat genotypes.

  • Asseng, S., Ritchie, J.T., Smucker, A.J.M., Robertson, M.J. 1998. Root growth and water uptake during water deficit and recovering in wheat. Plant Soil 201:265–273.

    Robertson M.J. , 'Root growth and water uptake during water deficit and recovering in wheat ' (1998 ) 201 Plant Soil : 265 -273.

    • Search Google Scholar
  • Condon, A.G., Richards, R.A., Rebetzke, G.J., Farquhar, G.D. 2002. Improving intrinsic water-use efficiency and crop yield. Crop Sci. 42:122–131.

    Farquhar G.D. , 'Improving intrinsic water-use efficiency and crop yield ' (2002 ) 42 Crop Sci. : 122 -131.

    • Search Google Scholar
  • Condon, A.G., Richards, R.A., Rebetzke, G.J., Farquhar, G.D. 2004. Breeding for high water-use efficiency. J. Exp. Bot. 55:2447–2460.

    Farquhar G.D. , 'Breeding for high water-use efficiency ' (2004 ) 55 J. Exp. Bot. : 2447 -2460.

    • Search Google Scholar
  • Del Blanco, I.A., Rajaram, S., Kronstad, W.E. 2001. Agronomic potentials of synthetic hexaploid wheat-derived populations. Crop Sci. 41:670–676.

    Kronstad W.E. , 'Agronomic potentials of synthetic hexaploid wheat-derived populations ' (2001 ) 41 Crop Sci. : 670 -676.

    • Search Google Scholar
  • Dreccer, M.F., Borgognone, M.G., Ogbonnaya, F.C., Trethowan, R.M., Winter, B. 2007. CIMMYT-selected derived synthetic bread wheat for rainfed environments: Yield evaluation in Mexico. Field Crops Res. 100:218–228.

    Winter B. , 'CIMMYT-selected derived synthetic bread wheat for rainfed environments: Yield evaluation in Mexico ' (2007 ) 100 Field Crops Res. : 218 -228.

    • Search Google Scholar
  • Inagaki, M.N., Valkoun, J., Nachit, M.M. 2007. Effect of soil water deficit on grain yield in synthetic bread wheat derivatives. Cereal Res. Commun. 35:1603–1608.

    Nachit M.M. , 'Effect of soil water deficit on grain yield in synthetic bread wheat derivatives ' (2007 ) 35 Cereal Res. Commun. : 1603 -1608.

    • Search Google Scholar
  • Inagaki, M.N., Nachit, M.M. 2008. Visual monitoring of water deficit stress using infra-red thermography in wheat. In: Appels, R. et al. (eds), Proceedings of the 11th International Wheat Genetics Symposium, Brisbane, Sydney University Press, 181. (URL: http://hdl.handle.net/2123/3452 )

    Nachit M.M. , '', in Proceedings of the 11th International Wheat Genetics Symposium , (2008 ) -.

    • Search Google Scholar
  • Inagaki, M., Mori, M., Nachit, M.M. 2009. Effect of a strobilurin-class fungicide on water use in synthetic bread wheat genotypes grown under increasing water deficit conditions. Cereal Res. Commun. 37:513–519.

    Nachit M.M. , 'Effect of a strobilurin-class fungicide on water use in synthetic bread wheat genotypes grown under increasing water deficit conditions ' (2009 ) 37 Cereal Res. Commun. : 513 -519.

    • Search Google Scholar
  • Marathée, J.P., Gomez-MacPherson, H. 2001. Future world supply and demand. In: Bonjean, A. P., Angus, W. J. (eds), The World Wheat Book: A History of Wheat Breeding. Lavoisier Publishing, Paris, France. pp. 1107–1116.

    Gomez-MacPherson H. , '', in The World Wheat Book: A History of Wheat Breeding , (2001 ) -.

  • Meyer, W.S., Tan, C.S., Barrs, H.D., Smith, R.C.G. 1990. Root growth and water uptake by wheat during drying of undisturbed and repacked soil in drainage lysimeters. Aust. J. Agr. Res. 41:253–265.

    Smith R.C.G. , 'Root growth and water uptake by wheat during drying of undisturbed and repacked soil in drainage lysimeters ' (1990 ) 41 Aust. J. Agr. Res. : 253 -265.

    • Search Google Scholar
  • Proffitt, A.P.B., Berliner, P.R., Oosterhuis, D.M. 1985. A comparative study of root distribution and water extraction efficiency by wheat grown under high- and low-frequency irrigation. Agron. J. 77:655–662.

    Oosterhuis D.M. , 'A comparative study of root distribution and water extraction efficiency by wheat grown under high- and low-frequency irrigation ' (1985 ) 77 Agron. J. : 655 -662.

    • Search Google Scholar
  • Rebetzke, G.J., Chapman, S.C., McIntyre, C.L., Richards, R.A., Condon, A.G., Watt, M., van Herwaarden, A.F. 2009. Grain yield improvement in water-limited environments. In: Carver, B.F. (ed.), Wheat: Science and Trade. Wiley-Blackwell, Iowa, USA. pp. 215–249.

    Herwaarden A.F. , '', in Wheat: Science and Trade , (2009 ) -.

  • Reynolds, M.P., Rebetzke, G., Pellegrineschi, A., Trethowan, R. 2006: Drought adaptation in wheat. In: Ribaut, J.-M. (ed.), Drought Adaptation in Cereals. Food Products Press, New York, USA. pp. 401–446.

    Trethowan R. , '', in Drought Adaptation in Cereals , (2006 ) -.

  • Reynolds, M., Dreccer, F., Trethowan, R. 2007. Drought-adaptive traits derived from wheat wild relatives and landraces. J. Exp. Bot. 58:177–186.

    Trethowan R. , 'Drought-adaptive traits derived from wheat wild relatives and landraces ' (2007 ) 58 J. Exp. Bot. : 177 -186.

    • Search Google Scholar
  • Richards, R.A., Rebetzke, G.J., Condon, A.G., van Herwaadenet, A.F. 2002. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci. 42:111–121.

    Herwaadenet A.F. , 'Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals ' (2002 ) 42 Crop Sci. : 111 -121.

    • Search Google Scholar
  • Ryan, J., Masri, S., Garabet, S., Diekmann, J., Habib, H. 1997. Soils of ICARDA’s agricultural experimental stations and sites: Climate, classification, physiological and chemical properties, and land use. ICARDA, Aleppo, 107 pp.

    Habib H. , '', in Soils of ICARDA’s agricultural experimental stations and sites: Climate, classification, physiological and chemical properties, and land use , (1997 ) -.

    • Search Google Scholar
  • Trethowan, R., van Ginkel, M. 2009. Synthetic wheat-an emerging genetic resource. In: Carver, B. F. (ed.), Wheat: Science and Trade. Wiley-Blackwell, Iowa, USA. pp. 369–385.

    Ginkel M. , '', in Wheat: Science and Trade , (2009 ) -.

  • Xue, Q., Zhu, Z., Musick, J.T., Stewart, B.A., Dusek, D.A. 2003. Root growth and water uptake in winter wheat under deficit irrigation. Plant Soil 257:151–161.

    Dusek D.A. , 'Root growth and water uptake in winter wheat under deficit irrigation ' (2003 ) 257 Plant Soil : 151 -161.

    • Search Google Scholar
  • Zhang, H., Oweis, T., Garabet, S., Pala, M. 1998. Water-use efficiency and transpiration efficiency of wheat under rain-fed conditions and supplemental irrigation in a Mediterranean-type environment. Plant Soil 201:295–305.

    Pala M. , 'Water-use efficiency and transpiration efficiency of wheat under rain-fed conditions and supplemental irrigation in a Mediterranean-type environment ' (1998 ) 201 Plant Soil : 295 -305.

    • Search Google Scholar

Click HERE for submission guidelines

Manuscript submission: CRC Manuscript Submission

 

  • Impact Factor (2019): 0.811
  • Scimago Journal Rank (2019): 0.310
  • SJR Hirsch-Index (2019): 30
  • SJR Quartile Score (2019): Q3 Agronomy and Crop Science
  • SJR Quartile Score (2019): Q4 Genetics
  • SJR Quartile Score (2019): Q4 Physiology
  • Impact Factor (2018): 0.708
  • Scimago Journal Rank (2018): 0.321
  • SJR Hirsch-Index (2018): 30
  • SJR Quartile Score (2018): Q3 Agronomy and Crop Science
  • SJR Quartile Score (2018): Q4 Physiology

Language: English

Founded in 1973
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 48.
Indexing and Abstracting Services:

  • AgBiotechNet Abstracts
  • Agricola
  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Current Contents/Agriculture
  • Biology & Environmental Sciences
  • ISI Web of Science/li>
  • Science Citation Index Expanded
  • SCOPUS

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pauk, János

Technical Editor(s): Hajdu Buza, Kornélia

Technical Editor(s): Lantos, Csaba

Editorial Board

  • A. Aniol (Poland)
  • P. S. Baenziger (USA)
  • R.K. Behl (India)
  • F. Békés (Australia)
  • L. Bona (Hungary)
  • A. Börner (Germany)
  • R. N. Chibbar (Canada)
  • S. Gottwald (Germany)
  • A. Goyal (Canada)
  • H. Grausgruber (Austria)
  • T. Harangozó (Hungary)
  • E. Kapusi (Austria)
  • E.K. Khlestkina (Russia)
  • J. Kolmer (USA)
  • V. Korzun (Germany)
  • R. A. McIntosh (Australia)
  • Á. Mesterházy (Hungary)
  • A. Mohan (USA)
  • I. Molnár (Hungary)
  • M. Molnár-Láng (Hungary)
  • A. Pécsváradi (Hungary)
  • S. K. Rasmussen (Denmark)
  • N. Rostoks (Latvia)
  • M. Taylor (Germany)
  • J. Zhang (China)
  • X.F. Zhang (USA)

 

Senior Editorial Board

  • P. Bartos (Czech Republic)
  • H. Bürstmayr (Austria)
  • J. Johnson (USA)
  • Z. Kertész (Hungary)
  • G. Kimber (USA)
  • J. Matuz (Hungary)

Cereal Research Communications
Cereal Research Non-Profit Ltd. Company
Address: P.O. Box 391, H-6701 Szeged, Hungary
Phone: +36 62 435 235
Fax: +36 62 420 101
E-mail: crc@gk-szeged.hu