Anthocyanin accumulation in vegetative organs has a relationship to stress resistance in plants. In wheat, ability to accumulate anthocyanins in the coleoptile is inherited and controlled by the Rc (red coleoptile) genes. The aim of the current study was to find potential sources of ‘strong’ Rc alleles conferring very high levels of anthocyanin production and to study the effect of genetic background on Rc expression. We measured the relative anthocyanin content (OD530) in the coleoptile of different wheat and wheat-alien genetic stocks and accessions to find potential sources of ‘strong’ Rc alleles conferring very high levels of anthocyanin production. The OD530 values varied from 0.514 to 3.311 in genotypes having red coleoptiles. The highest anthocyanin content was detected in coleoptiles of four Triticum dicoccoides accessions originating from Israel and the Russian T. aestivum cultivar ‘Novosibirskaya 67’, suggesting that their Rc alleles can be used to increase anthocyanin content in the coleoptile of wheat cultivars. It is also suggested that rye Rc alleles, such as that of Russian cultivar ‘Selenga’, can be used to increase anthocyanin content in triticale seedlings.
Arbuzova, V.S., Maystrenko, O.I., Popova, O.M. 1998. Development of near-isogenic lines of the common wheat cultivar ’saratovskaya 29’. Cereal Res. Commun. 26:39–46.
Popova O.M. , 'Development of near-isogenic lines of the common wheat cultivar ’saratovskaya 29’ ' (1998 ) 26 Cereal Res. Commun. : 39 -46 .
Bahler, D., Steffen, K.L., Orzolek, M.D. 1991. Morphological and biochemical comparison of a purple-leafed and a green-leafed pepper cultivar. HortScience 26:736.
Orzolek M.D. , 'Morphological and biochemical comparison of a purple-leafed and a green-leafed pepper cultivar ' (1991 ) 26 HortScience : 736 -.
Bogdanova, E.D., Sarbaev, A.T., Makhmudova, K.K. 2002. Resistance of common wheat to bunt. In: Proceedings of the Research Conference on Genetics. Moscow, Russia, pp. 43–44.
Chalker-Scott, L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70:1–9.
Chalker-Scott L. , 'Environmental significance of anthocyanins in plant stress responses ' (1999 ) 70 Photochem. Photobiol. : 1 -9 .
Driscoll, C.J., Sears, E.R. 1971. Individual addition of the chromosomes of ‘Imperial’ rye to wheat. Agron. Abstr. 6.
Dutt, S.K., Bal, A.R., Bandyopadhyay, A.K. 1991. Salinity induced chemical changes in Casuarinu equisetifolicz Forst. Egypt. J. Soil Sci. 31:57–63.
Bandyopadhyay A.K. , 'Salinity induced chemical changes in Casuarinu equisetifolicz Forst ' (1991 ) 31 Egypt. J. Soil Sci. : 57 -63 .
Farrant, J.M. 2000. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol. 151:29–39.
Farrant J.M. , 'A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species ' (2000 ) 151 Plant Ecol. : 29 -39 .
Field, T.S., Lee, D.W., Holbrook, N.M. 2001. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol. 127:566–574.
Holbrook N.M. , 'Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood ' (2001 ) 127 Plant Physiol. : 566 -574 .
Friebe, B., Tuleen, N., Jiang, J., Gill, B.S. 1993. Standard karyotype of Triticum longissimum and relationship with T. aestivum. Genome 36:731–742.
Gill B.S. , 'Standard karyotype of Triticum longissimum and relationship with T. aestivum ' (1993 ) 36 Genome : 731 -742 .
Friebe, B., Tuleen, N.A., Gill, B.S. 1995. Standard karyotype of Triricum searsii and its relationship with other S-genome species and common wheat. Theor. Appl. Genet. 91:248–254.
Gill B.S. , 'Standard karyotype of Triricum searsii and its relationship with other S-genome species and common wheat ' (1995 ) 91 Theor. Appl. Genet. : 248 -254 .
Friebe, B., Qi, L.L., Nasuda, S., Zhang, P., Tuleen, N.A., Gill, B.S. 2000. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor. Appl. Genet. 101:51–58.
Gill B.S. , 'Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines ' (2000 ) 101 Theor. Appl. Genet. : 51 -58 .
Gale, M.D., Flavell, R.B. 1971. The genetic control of anthocyanin biosynthesis by homoeologous chromosomes in wheat. Genet. Res. Camb. 18:237–244.
Flavell R.B. , 'The genetic control of anthocyanin biosynthesis by homoeologous chromosomes in wheat ' (1971 ) 18 Genet. Res. Camb. : 237 -244 .
Gould, K.S. 2004. Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves. J. Biomed. Biotech. 5:314–320.
Gould K.S. , 'Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves ' (2004 ) 5 J. Biomed. Biotech. : 314 -320 .
Izdebski, R. 1992. Utilization of rye genetic resources — initial material selection. Hereditas 116:179–185.
Izdebski R. , 'Utilization of rye genetic resources — initial material selection ' (1992 ) 116 Hereditas : 179 -185 .
Kaliamoorthy, S., Rao, A.S. 1994. Effect of salinity on anthocyanin accumulation in the root of maize. Ind. J. Plant Physiol. 37:169–170.
Rao A.S. , 'Effect of salinity on anthocyanin accumulation in the root of maize ' (1994 ) 37 Ind. J. Plant Physiol. : 169 -170 .
Khlestkina, E.K., Pestsova, E.G., Röder, M.S., Börner, A. 2002. Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor. Appl. Genet. 104:632–637.
Börner A. , 'Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.) ' (2002 ) 104 Theor. Appl. Genet. : 632 -637 .
Khlestkina, E.K., Röder, M.S., Pshenichnikova, T.A., Simonov, A.V., Salina, E.A., Börner, A. 2008. Genes for anthocyanin pigmentation in wheat: review and microsatellite-based mapping. In: Verrity, J.F., Abbington, L.E. (eds), Chromosome mapping research developments. NOVA Science Publishers, Inc, N.Y., pp. 155–175.
Börner A. , '', in Chromosome mapping research developments , (2008 ) -.
Khlestkina, E.K., Tereshchenko, O.Yu., Salina, E.A. 2009a. Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids. Mol. Genet. Genom. 282:475–485.
Salina E.A. , 'Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids ' (2009 ) 282 Mol. Genet. Genom. : 475 -485 .
Khlestkina, E.K., Pshenichnikova, T.A., Röder, M.S., Börner, A. 2009b. Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes. Cereal Res. Commun. 37:391–398.
Börner A. , 'Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes ' (2009 ) 37 Cereal Res. Commun. : 391 -398 .
Khlestkina, E.K., Röder, M.S., Pshenichnikova, T.A., Börner, A. 2010. Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L.). Mol. Breed. 25:125–132.
Börner A. , 'Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L.) ' (2010 ) 25 Mol. Breed. : 125 -132 .
Kuspira, J., Unrau, J. 1958. Determination of the number and dominance relationships of genes on substituted chromosomes in common wheat Triticum aestivum L. Can. J. Plant Sci. 38:119–205.
Unrau J. , 'Determination of the number and dominance relationships of genes on substituted chromosomes in common wheat Triticum aestivum L ' (1958 ) 38 Can. J. Plant Sci. : 119 -205 .
Mann, H.B., Whitney, D.R. 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Statist. 18:50.
Whitney D.R. , 'On a test of whether one of two random variables is stochastically larger than the other ' (1947 ) 18 Ann. Math. Statist. : 50 -.
Marrs, K.A., Walbot, V. 1997. Expression and RNA splicing of the maize glutathione-S-transferase Bronz2 gene is regulated by cadmium and other stresses. Plant Physiol. 113:93–102.
Walbot V. , 'Expression and RNA splicing of the maize glutathione-S-transferase Bronz2 gene is regulated by cadmium and other stresses ' (1997 ) 113 Plant Physiol. : 93 -102 .
McFadden, E.S., Sears, E.R. 1947. The genome approach in radical wheat breeding. J. Amer. Soc. Agron. 39:1011–1026.
Sears E.R. , 'The genome approach in radical wheat breeding ' (1947 ) 39 J. Amer. Soc. Agron. : 1011 -1026 .
Nagata, T., Todoriki, S., Masumizu, T., Suda, I., Furuta, S., Du, Z., Kikuchi, S. 2003. Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. J. Agric. Food. Chem. 51:2992–2999.
Kikuchi S. , 'Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis ' (2003 ) 51 J. Agric. Food. Chem. : 2992 -2999 .
Nagata, T., Yamada, H., Du, Z., Todoriki, S., Kikuchi, S. 2005. Microarray analysis of genes that respond to gamma-irradiation in Arabidopsis. J. Agric. Food. Chem. 53:1022–1030.
Kikuchi S. , 'Microarray analysis of genes that respond to gamma-irradiation in Arabidopsis ' (2005 ) 53 J. Agric. Food. Chem. : 1022 -1030 .
Parker, J. 1962. Relationships among cold hardiness, water soluble protein, anthocyanins, and free sugars in Hederu helix L. Plant Physiol. 37:809–813.
Parker J. , 'Relationships among cold hardiness, water soluble protein, anthocyanins, and free sugars in Hederu helix L ' (1962 ) 37 Plant Physiol. : 809 -813 .
Pershina, L.A., Devyatkina, E.P., Belova, L.I., Trubacheeva, N.V., Arbuzova, V.S., Kravtsova, L.A. 2009. Features of alloplasmic wheat-barley substitution and addition lines (Hordeum marinum subsp. gussoneanum)-Triticum aestivum. Rus. J. Genetics 45:1223–1229.
Kravtsova L.A. , 'Features of alloplasmic wheat-barley substitution and addition lines (Hordeum marinum subsp. gussoneanum)-Triticum aestivum ' (2009 ) 45 Rus. J. Genetics : 1223 -1229 .
Pestsova, E.G., Röder, M.S., Börner, A. 2006. Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor. Appl. Genet. 112:634–647.
Börner A. , 'Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines ' (2006 ) 112 Theor. Appl. Genet. : 634 -647 .
Ramanjulu, S., Veeranjaneyulu, K., Sudhakar, C. 1993. Physiological changes induced by NaCl in mulberry var. Mysore Local. Ind. J. Plant Physiol. 36:273–275.
Sudhakar C. , 'Physiological changes induced by NaCl in mulberry var. Mysore Local ' (1993 ) 36 Ind. J. Plant Physiol. : 273 -275 .
Ryan, K.G., Swinny, E.E., Markham, K.R., Winefield, C. 2002. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59:23–32.
Winefield C. , 'Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves ' (2002 ) 59 Phytochemistry : 23 -32 .
Silkova, O.G., Dobrovol’skaia, O.B., Dubovets, N.I., Adonina, I.G., Kravtsova, L.A., Röder, M.S., Salina, E.A., Shchapova, A.I., Shumny, V.K. 2006. Production of wheat-rye substitution lines and identification of chromosome composition of karyotypes using C-banding, GISH, and SSR markers. Rus. J. Genet. 42:645–653.
Shumny V.K. , 'Production of wheat-rye substitution lines and identification of chromosome composition of karyotypes using C-banding, GISH, and SSR markers ' (2006 ) 42 Rus. J. Genet. : 645 -653 .
Singh, K.B., Malhotra, R.S., Saxena, M.C. 1995. Additional sources of tolerance to cold in cultivated and wild Cicer species. Crop Sci. 35:1491–1497.
Saxena M.C. , 'Additional sources of tolerance to cold in cultivated and wild Cicer species ' (1995 ) 35 Crop Sci. : 1491 -1497 .
StatSoft Inc., STATISTICA: Data Analysis Software System, www.statsoft.com , 2001
Tereshchenko, O.Yu., Khlestkina, E.K., Gordeeva, E.I., Arbuzova, V.S., Salina, E.A. 2010. Biosynthesis of flavonoids under salinity stress in Triticum aestivum L. Abstr. International Conference “Plant Genetics, Genomics, and Biotechnology”, Novosibirsk, June 7–10, p. 84.
Trubacheeva, N.V., Badaeva, E.D., Adonina, I.G., Belova, L.I., Devyatkina, E.P., Pershina, L.A. 2008. Construction and molecular and cytogenetic analyses of euploid (2n = 42) and telocentric addition (2n = 42 + 2t) alloplasmic lines (Hordeum marinum subsp. gussoneanum)-Triticum aestivum. Rus. J. Genetics 44:67–73.
Pershina L.A. , 'Construction and molecular and cytogenetic analyses of euploid (2n = 42) and telocentric addition (2n = 42 + 2t) alloplasmic lines (Hordeum marinum subsp. gussoneanum)-Triticum aestivum ' (2008 ) 44 Rus. J. Genetics : 67 -73 .