View More View Less
  • 1 Hungarian Academy of Sciences Agricultural Institute, Centre for Agricultural Research Brunszvik u. 2 Martonvásár H-2462 Hungary
Restricted access

Wheat-based food has great importance in human nutrition: in European countries they provide 20–30% of the daily calorie intake, and additionally, the wholemeal and healthy food becomes even more popular. Mineral content in grains is dependent on genetic and environmental factors (varieties, soil type, geographical location of the growing area, etc.), therefore, it is complicated to estimate how many percentage of the daily micronutrient requirements can be covered by wheat-based products. In this study, copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se) and zinc (Zn) contents of 13 commercial wheat flour products, and the white flour and wholemeal of 24 winter type bread wheat varieties were studied to estimate the nutritional value of these products. All investigated samples were produced in Hungary. Significant variation was revealed in the case of all mineral elements in the different brands of wheat flours. Generally, the white flour enriched with germ showed higher mineral contents than the average values of normal white flours. Furthermore, the wholemeal has higher Cu, Fe, Mn and Zn, but not higher Se contents than the white flours. Mo content was also higher in some brands of white flour than in wholemeal.The investigated winter wheat varieties showed significant differences in the case of Fe, Mn, Se and Zn contents, but none of the varieties showed outstandingly high micronutrient content. The milling process — as it was expected — reduces the concentrations of four elements (Fe 33%; Mn 88%; Zn 71%; Cu 44%); however, the Se and Mo concentrations were not affected significantly. Using the average micronutrient content in the wholemeal of varieties, the daily Mn and Fe requirement can be covered by the consumption of about 250 g wholemeal. Additionally, the daily Mo requirement could be met by the daily consumption of 140–190 g of commercial white or wholemeal flour.

  • Bálint, A.F., Kovács, G., Erdei, L., Sutka, J. 2001. Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat species. Cereal Res. Commun. 29: 375–382.

    Sutka J. , 'Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat species. Cereal ' (2001 ) 29 Res. Commun. : 375 -382.

    • Search Google Scholar
  • Broadley, M.R., Bowen, H.C., Cotterill, H.L., Hammond, J.P., Meacham, M.C., Mead, A., White, P.J. 2004. Phylogenetic variation in the shoot mineral concentration of angiosperms. J. Exp. Bot. 55: 321–336.

    White P.J. , 'Phylogenetic variation in the shoot mineral concentration of angiosperms ' (2004 ) 55 J. Exp. Bot. : 321 -336.

    • Search Google Scholar
  • Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil 302: 1–17.

    Cakmak I. , 'Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? ' (2008 ) 302 Plant and Soil : 1 -17.

    • Search Google Scholar
  • Cakmak, I., Torun, A., Millet, E., Feldman, M., Fahima, T., Korol, A., Nevo, E., Braun, H.J., Ozkan, H. 2004. Triticum dicoccoides: An important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Science and Plant Nutrition 50: 1047–1054.

  • Codus Alimentarius Hungaricus 2007. http://www.gabonaszovetseg.hu/dokumentumok/EK_liszt.pdf (Accessed 06.03.2013)

  • Cubadda, F., Aureli, F., Raggi, A., Carcea, M. 2009. Effect of milling, pasta making and cooking on minerals in durum wheat. J. Cereal Sci. 49: 92–97.

    Carcea M. , 'Effect of milling, pasta making and cooking on minerals in durum wheat ' (2009 ) 49 J. Cereal Sci. : 92 -97.

    • Search Google Scholar
  • Dietary Reference Intakes (DRIs): Recommended Intakes for Individuals, Food and Nutrition Board, Institute of Medicine, National Academies, 2004. (Retrieved 09.06.2009.)

    '', in Recommended Intakes for Individuals, Food and Nutrition Board, Institute of Medicine, National Academies , (2004 ) -.

    • Search Google Scholar
  • Erba, D., Hidalgo, A., Bresciani, J., Brandolini, A. 2011. Environmental and genotypic influences on trace element and mineral concentrations in whole meal flour of einkorn (Triticum monococcum L. subsp monococcum). J. Cereal Sci. 54: 250–254.

    Brandolini A. , 'Environmental and genotypic influences on trace element and mineral concentrations in whole meal flour of einkorn (Triticum monococcum L. subsp monococcum) ' (2011 ) 54 J. Cereal Sci. : 250 -254.

    • Search Google Scholar
  • Garvin, D.F., Hareland, G., Gregoire, B.R., Finley, J.W. 2011. Impact of wheat grain selenium content variation on milling and bread baking. Cereal Chem. 88: 195–200.

    Finley J.W. , 'Impact of wheat grain selenium content variation on milling and bread baking ' (2011 ) 88 Cereal Chem. : 195 -200.

    • Search Google Scholar
  • Gomez-Becerra, H.F., Yazici, A., Ozturk, L., Budak, H., Peleg, Z., Morgounov, A., Fahima, T., Saranga, Y., Cakmak, I. 2010. Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica 171: 39–52.

    Cakmak I. , 'Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments ' (2010 ) 171 Euphytica : 39 -52.

    • Search Google Scholar
  • Graham, R.D., Welch, R.M., Saunders, D.A., Ortiz-Monasterio, I., Bouis, H.E., Bonierbale, M., De Haan, S., Burgos, G., Thiele, G., Liria, R., Meisner, C.A., Beebe, S.E., Potts, M.J., Kadian, M., Hobbs, P.R., Gupta, R.K., Twomlow, S. 2007. Nutritious subsistence food systems. In: Sparks, D.L. (ed.), Advances in Agronomy. Elsevier Academic Press Inc., San Diego, USA. Vol. 92, 74 pp.

    Twomlow S. , '', in Advances in Agronomy , (2007 ) -.

  • Lyons, G., Ortiz-Monasterio, I., Stangoulis, J., Graham, R. 2005a. Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant and Soil 269: 369–380.

    Graham R. , 'Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? ' (2005 ) 269 Plant and Soil : 369 -380.

    • Search Google Scholar
  • Lyons, G.H., Genc, Y., Stangoulis, J.C.R., Palmer, L.T., Graham, R.D. 2005b. Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biological Trace Element Res. 103: 155–168.

    Graham R.D. , 'Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content ' (2005 ) 103 Biological Trace Element Res. : 155 -168.

    • Search Google Scholar
  • Mayer, J.E., Pfeiffer, W.H., Beyer, P. 2008. Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biol. 11: 166–170.

    Beyer P. , 'Biofortified crops to alleviate micronutrient malnutrition ' (2008 ) 11 Current Opinion in Plant Biol. : 166 -170.

    • Search Google Scholar
  • Monasterio, I., Graham, R.D. 2000. Breeding for trace minerals in wheat. Food and Nutrition Bulletin 21: 392–396.

    Graham R.D. , 'Breeding for trace minerals in wheat ' (2000 ) 21 Food and Nutrition Bulletin : 392 -396.

    • Search Google Scholar
  • Murphy, J., Cashman, K.D. 2001. Selenium content of a range of Irish foods. Food Chem. 74: 493–498.

    Cashman K.D. , 'Selenium content of a range of Irish foods ' (2001 ) 74 Food Chem. : 493 -498.

    • Search Google Scholar
  • O’Dell, B.L. 1972. Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J. of Agricultural and Food Chem. 20: 718–721.

    O’Dell B.L. , 'Distribution of phytate and nutritionally important elements among the morphological components of cereal grains ' (1972 ) 20 J. of Agricultural and Food Chem. : 718 -721.

    • Search Google Scholar
  • Oktem, A., Oktem, A.G. 2009. Mineral composition of some turkish durum wheat genotypes. Asian J. of Chem. 21: 2733–2738.

    Oktem A.G. , 'Mineral composition of some turkish durum wheat genotypes ' (2009 ) 21 Asian J. of Chem. : 2733 -2738.

    • Search Google Scholar
  • Oury, F.X., Leenhardt, F., Remesy, C., Chanliaud, E., Duperrier, B., Balfourier, F., Charmet, G. 2006. Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur. J. Agron. 25: 177–185.

    Charmet G. , 'Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat ' (2006 ) 25 Eur. J. Agron. : 177 -185.

    • Search Google Scholar
  • Ozturk, L., Yazici, M.A., Yucel, C., Torun, A., Cekic, C., Bagci, A., Ozkan, H., Braun, H.J., Sayers, Z., Cakmak, I. 2006. Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum 128: 144–152.

    Cakmak I. , 'Concentration and localization of zinc during seed development and germination in wheat ' (2006 ) 128 Physiologia Plantarum : 144 -152.

    • Search Google Scholar
  • Sigrist, M., Brusa, L., Campagnoli, D., Beldomenico, H. 2012. Determination of selenium in selected food samples from Argentina and estimation of their contribution to the Se dietary intake. Food Chem. 134: 1932–1937.

    Beldomenico H. , 'Determination of selenium in selected food samples from Argentina and estimation of their contribution to the Se dietary intake ' (2012 ) 134 Food Chem. : 1932 -1937.

    • Search Google Scholar
  • Spadoni, M., Voltaggio, M., Carcea, M., Coni, E., Raggi, A., Cubadda, F. 2007. Bioaccessible selenium in Italian agricultural soils: Comparison of the biogeochemical approach with a regression model based on geochemical and pedoclimatic variables. Sci. of the Total Environ. 376: 160–177.

    Cubadda F. , 'Bioaccessible selenium in Italian agricultural soils: Comparison of the biogeochemical approach with a regression model based on geochemical and pedoclimatic variables ' (2007 ) 376 Sci. of the Total Environ. : 160 -177.

    • Search Google Scholar
  • SPSS Statistics for Windows, Version 17.0. 2008. SPSS Inc., Chicago, USA.

  • Stroud, J.L., Zhao, F.J., Buchner, P., Shinmachi, F., Mcgrath, S.P., Abecassis, J., Hawkesford, M.J., Shewry, P.R. 2010. Impacts of sulphur nutrition on selenium and molybdenum concentrations in wheat grain. J. Cereal Sci. 52: 111–113.

    Shewry P.R. , 'Impacts of sulphur nutrition on selenium and molybdenum concentrations in wheat grain ' (2010 ) 52 J. Cereal Sci. : 111 -113.

    • Search Google Scholar
  • Ward, J.L., Poutanen, K., Gebruers, K., Piironen, V., Lampi, A.M., Nystrom, L., Andersson, A.A.M., Aman, P., Boros, D., Rakszegi, M., Bedo, Z., Shewry, P.R. 2008. The HEALTHGRAIN cereal diversity screen: Concept, results, and prospects. J. of Agric. and Food Chem. 56: 9699–9709.

    Shewry P.R. , 'The HEALTHGRAIN cereal diversity screen: Concept, results, and prospects ' (2008 ) 56 J. of Agric. and Food Chem. : 9699 -9709.

    • Search Google Scholar
  • Zhao, F.J., Su, Y.H., Dunham, S.J., Rakszegi, M., Bedo, Z., Mcgrath, S.P., Shewry, P.R. 2009. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 49: 290–295.

    Shewry P.R. , 'Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin ' (2009 ) 49 J. Cereal Sci. : 290 -295.

    • Search Google Scholar