Due to the warm and favourably humid climate of Southern Hungary, the maize is one of the most important crops. The protection against crop damage caused by fusarium and Aspergillus species is essential. Detection of aflatoxin B1 (AFB1) molecules in cereal crops by selective sensors is important, while they can cause serious diseases in humans and animals if they enter the food chain. Our main objective was to develop selective AFB1 sensor with increased sensitivity applying βCD-functionalized gold nanoparticles (AuβCD NPs) in surface plasmon resonance (SPR) measuring apparatus. The nanoparticles ca. 10 nm in diameter were prepared in the presence of thiol-modified cyclodextrin. The adsorption isotherms of AFB1 on bare, thiol-modified cyclodextrin and AuβCD NPs covered Au film surface were calculated using SPR platform. The AFB1 concentration can be quantitatively determined in the 0.001–23.68 ng/mL range. The AuβCD NPs were found to be highly sensitive and exhibited a remarkably low limit of detection (LOD; 1 pg/mL) without using other analytical reagents.
ChemAxon 2013. Marvin 6.0.0. http://www.chemaxon.com
Daly, S.J., Keating, G.J., Dillon, P.P., Manning, B.M., O’Kennedy, R., Lee, H.A., Morgan, M.R. 2000. Development of surface plasmon resonance-based immunoassay for aflatoxin B(1). Agric. Food Chem. 48:5097–5104.
Du, Y., Luo, X.L., Xu, J.J., Chen, H.Y. 2007. A simple method to fabricate a chitosan-gold nps film and its application in glucose biosensor. Bioelectrochem. 70:342–347.
Dunne, L., Daly, S., Baxter, A., Haughey, S., O’Kennedy, R. 2005. Surface plasmon resonance-based immunoassay for the detection of aflatoxin B1 using single-chain antibody fragments. Spectroscopy Letters 38:229–245.
Feijter, J.A., Benjamins, J., Veer, F.A. 1978. Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface. Biopolymers 17:1759–1772.
Ho, C., Robinson, A., Miller, D., Davis, M. 2005. Overview of sensors and needs for environmental monitoring. Sensors 5:4–37.
Hodnik, V., Anderluh, G. 2009. Toxin detection by surface plasmon resonance. Sensors 9:1339–1354.
Homola, J. 2008. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Review 108:462–493.
Huang, X., El-Sayed, I. H., Qian, W., El-Sayed, M. A. 2006. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. JACS 128:2115–2120.
Kham, K., Guerrouache, M., Carbonnier, B., Laterges, M., Perrot, H., Millot, M.C. 2007. Supramolecular interactions between b-cyclodextrin and hydrophobically end-capped poly(ethylene glycol)s: A quartz crystal microbalance study. J. Coll. Interf. Sci. 315: 800–804.
Kim, J.H., Kim, K.S., Manesh, K.M., Santhosh, P., Gopalan, A.I., Lee, K.-P. 2008. Self-assembly directed synthesis of gold nanostructures. Colloids and Surfaces A 313–314:612–616.
Li, P., Zhang, Q. 2009. Immunoassays for aflatoxins. Trends Analyt. Chem. 28:1115–1126.
Li, Y., Liu, X., Lin, Z. 2012. Recent developments and applications of surface plasmon resonance biosensors for the detection of mycotoxins is foodsuffs. Food Chem. 132:1549–1554.
Liedberg, B., Lundström, I. 1993. Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors and Actuators A 11:63–72.
Lu, Z., Chen, X., Wand, Y., Zheng, X., Li, C.M. 2015. Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchimica Acta 182:571–578.
Luan, Y.X., Chen, Z.B., Xie, G., Chen, J.Y., Lu, A.X., Li, C., Fu, H.L., Ma, Z.H., Wang, J.H. 2015. Rapid visual detection of aflatoxin B1 by label-free aptasensor using unmodified gold nanoparticles. J. of Nanoscience and Nanotechnology 15:1357–1361.
Mandal, A.K., Das, D.K., Das, A.K., Sen Mojumdar, S., Bhattacharyya, K. 2010. Study of gamma-cyclodextrin host-guest complex and nanotube aggregate by fluorescence correlation spectroscopy. J. Phys. Chem. B 115:10456–10461.
Manetta, A.C., Di Giuseppe, L., Giammarco, M., Fusaro, I., Simonella, A., Gramenzi, A. 2005. Highperformance liquid chromatography with post-column derivatisation and fluorescence detection for sensitive determination of aflatoxin M1 in milk and cheese. J. Chromatography A. 1083:219–222.
Moricz, A., Fater, Z., Otta, K.H., Tyihak, E., Mincsovics, E. 2007. Over pressured layer chromatographic determination of aflatoxin B1, B2, G1 and G2 in red paprika. Microch. J. 85:140–144.
Moon, J., Kim, G., Lee, S. 2012. A gold nanoparticle and aflatoxin B1-BSA conjugates based lateral flow assay method for the analysis aflatoxin B1. Materials 5:634–643.
Ogoshi, T., Harada, A. 2008. Chemical sensors based on cyclodextrin derivatives. Sensors 8:4961–4982.
Pál, L., Dublecz, K., Weber, M., Balogh, K., Erdélyi, M., Szigeti, G., Mézes, M. 2009. Effect of combined treatment with aflatoxin B1 and T-2 toxin and metabolites on some production traits and lipid peroxide status parameters of broiled chickens. Acta Veterinaria Hungarica 57:75–84.
Peiwu, L., Qi, Z., Wen, Z., Jinyang, Z., Xiaomei, C., Jun, J., Lihua, X., Daohong, Z. 2009. Development of a class-specific monoclonal antibody-based ELISA for aflatoxins in peanut. Food Chem. 115:313–317.
Perez-Juste, J., Pastoriza-Santos, I., Liz-Marzan, L.M., Mulvaney, P. 2005. Gold nanorods: Synthesis, characterization and applications. Coordination Chem. Review 249:1870–1901.
Pestka, J.J., Gaur, P.K., Chu, F.S. 1980. Quantitation of aflatoxin B1 and aflatoxin B1 antibody by an enzymelinked immunosorbent microassay. Appl. Envir. Microb. 40:1027–1031.
Sebők, D., Csapó, E., Preocanin, T., Bohus, G., Kallay, N., Dékány, I. 2013. Adsorption of ibuprofen and dopamine on functionalized gold using surface plasmon resonance spectroscopy at solid-liquid interface. Croatia Chemica Acta 86:287–295.
Sharma, A., Matharu, Z., Sumana, G., Solanki, P.R., Kim, C.G., Malhotra, B.D. 2010. Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films 519:1213–1218.
Shim, W.-B., Mun, H., Joung, H.-A., Ofori, J.A., Chung, D.-H., Kim, M.-G. 2014. Chemoluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples. Food Control 36:30–35.
Soft Flow Hungary 2013. ELISA Kit for determination of total aflatoxin (B1, B2, G1, G2). Technical documentation 301013.
Szejtli, J. 1995. Selectivity/structure correlation in cyclodextrin chemistry. Supramolecular Chem. 6:217–223.
Szejtli, J. 2004. Past, present, and future of cyclodextrin research. Pure and Appl. Chem. 76:1825–1845.
Tumolo, T., Angnes, L., Baptista, M.S. 2004. Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance. Anal. Biochem. 333:273–279.
Turkevich, J. 1985. Colloidal Gold. Part I. Gold Bulletin 18:86–91.
Urusov, A.E., Zherdev, A.V., Dzantiev, B.B. 2014a. Use of gold nanopatricle-labeled secondary antibodies to improve the sensitivity of an immunochromatographic assay for aflatoxin. Microchim Acta 181:1939–1946.
Urusov, A.E., Petrakova, A.V., Vozniak, M.V., Zherdev, A.V., Dzantiev, B.B. 2014b. Rapid immunoenzyme assay of aflatoxin B1 using magnetic nanoparticles. Sensors 14:21843–21857.
Yuan, J., Deng, D., Lauren, D.R., Aguilar, M.I., Wu, Y. 2009. Surface plasmon resonance biosensor for the detection of ochratoxin A in cereals and beverages. Analytica Chimica Acta 656:63–71.
Var, I., Kabak, B., Gok, F. 2007. Survey of aflatoxin B1 in helva, a traditional Turkish food, by TLC. Food Control 18:59–62.
Varga, J., Frisvad, J.C., Samson, R.A. 2009. A reappraisal of fungi producing aflatoxins. World Mycotoxin J. 2:263–277.
Wang, X., Niessner, R., Knopp, D. 2014. Magnetic bead-based colorimetric immunoassay for aflatoxin B1 using gold nanoparticles. Sensors 14:21535–21548.