The association between genomic constitution and agronomic traits was studied in F2 plants and F3:4 families of two crosses between a winter hexaploid triticale line with a 2D(2R) chromosome substitution and two hexaploid triticale cultivars carrying the complete rye genome (BBAARR). The analyses revealed that 2D(2R) substitution reduces plant height and spikelet number per spike, increases the 1,000-kernel weight, does not reduce grain shrivelling, and promotes early heading and anthesis. 2D(2R) substitution lines exhibit deeper postharvest seed dormancy, which provides resistance to preharvest sprouting. However, 2D(2R) substitution lines are not recommended for winter hexaploid triticale cultivar development purposes due to their reduced grain productivity.
Bernatzky, R., Tanksley, S.D. 1986. Genetics of actin-related sequences in tomato. Theor. Appl. Genet. 72:314–321.
Budak, H., Baenziger, P.S., Beecher, B.S., Graybosch, R.A., Campbell, B.T., Shipman, M.J., Erayman, M., Eskridge, K.M. 2004. The effect of introgressions of wheat D-genome chromosomes into “Presto” triticale. Euphytica 137:261–270.
Budzianowski, G., Woś, H. 2004. The effect of single D-genome chromosomes on aluminum tolerance of triticale. Euphytica 137:165–172.
Darvey, N.L., Naeem, H., Gustafson, J.P. 2000. Triticale: production and utilization. In Kulp, K., Ponte, J. (eds), Handbook of Cereal Science and Technology. 2nd ed. Marcel Dekker. New York, USA. pp. 257–274.
Divashuk, M.G., Kroupin, P.Yu., Soloviev, A.A., Karlov, G.I. 2010a. Molecular cytogenetic characterization of the spring triticale line 131/7 carrying a rye–wheat translocation. Rus. J. Genet. 46:185–190.
Divashuk, M.G., Soloviev, A.A., Karlov, G.I. 2010b. The effect of selection for phenotypical characters on the chromosome constitution in spring triticale. Rus. J. Genet. 46:340–344.
Fisher, R.A. 1934. Statistical Methods for Research Workers. Oliver and Boyd. Edinburgh, UK. pp. 99–101.
Gill, R.S., Bains, N.S., Dhindsa, G.S. 2010. Characterization of D/R chromosome segregant lines from triticale×bread wheat crosses using chromosome specific SSR markers. Wheat Inf. Serv. 110:19–23.
Gupta, P.K., Priyadarshan, P.M. 1982. Triticale: present status and future prospects. Adv. Genet. 21:255–345.
Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W. et al. 2013. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95.
Kim, B.Y., Baier, A.C., Somers, D.J., Gustafson, J.P. 2001. Aluminum tolerance in triticale, wheat, and rye. Euphytica 120:329–337.
Korzun, V., Röder, M.S., Ganal, M.W., Worland, A.J., Law, C.N. 1998. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 96:1104–1109.
Krasilova, N.M., Adonina, I.G., Silkova, O.G., Shumny, V.K. 2012. Transmission of the rye 2R chromosome in backcrosses of wheat — rye 2R(2D) substitution lines to common wheat varieties. Rus. J. Genet.: Appl. Res. 2:65–71.
Kurkiev, K.U. 2008. Inheritance of plant height in hexaploid triticales with R/D substitution. Rus. J. Gent. 44:1080–1086.
Lapin, D., Divashuk, M., Soloviev, A. 2007. The identification of D-genome in some spring triticale lines. Acta Agriculturae Serbica 12:41–50.
Lee, J.-H., Graybosch, R.A., Lee, D.J. 1994. Detection of rye chromosome 2R using the polymerase chain reaction and sequence-specific DNA primers. Genome 37:19–22.
Masojć, P., Banek-Tabor, A., Milczarski, P., Twardowska, M. 2007. QTLs for resistance to preharvest sprouting in rye (Secale cereale L.). J. Appl. Genet. 48:211–217.
Mergoum, M., Pfeiffer, W.H., Peña, R.J., Ammar, K., Rajaram, S. 2004. Triticale crop improvement: the CIMMYT programme. In: Triticale Improvement and Production. FAO. Rome, Italy. pp. 11–26.
Mergoum, M., Singh, P.K., Peña, R.J., Lozano-del Río, A.J., Cooper, K.V., Salmon, D.F., Gómez Macpherson, H. 2009. Triticale: a “new” crop with old challenges. In: Carena, M.J. (ed.), Cereals. Springer. New York, USA. pp. 1–21.
National Research Council. 1989. Triticale: a Promising Addition to the World’s Cereal Grains. National Academy Press. Washington, D.C., USA. pp. 35–41.
Reddy, V.R.K., Zereena, V. 1999. Rye chromosome composition and kernel characters in hexaploid triticales. Crop. Res. 17:75–79.
Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.-H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.
Royo, C., Rodriguez, A., Romagosa, I. 1993. Differential adaptation of complete and substituted triticale. Plant Breeding 111:113–119.
Rybka, К. 2003. An approach to identification of rye chromosomes affecting the pre-harvest sprouting in triticale. J. Appl. Genet. 44:491–496.
Silkova, O.G., Kabanenko, Yu, N., Loginova, D.V. 2014. The effect of wheat — rye substitution on chromosome elimination: an analysis of univalents’ behavior in wheat meiosis with dimonosomy and tetramonosomy. Rus. J. Genet. 50:245–252.
Sodkiewicz, W., Apolinarska, B., Sodkiewicz, T., Wiśniewska, H. 2011. Effect of chromosomes of the wheat D genome on traits of hexaploid substitution triticale. Cereal Res. Commun. 39:445–452.
Somers, D., Isaac, P. 2004. SSRs from the wheat microsatellite consortium. http://www.wheat.pw.usda.gov/ggpages/SSR/WMC/
Song, Q.J., Shi, J.R., Singh, S., Fickus, E.W., Costa, J.M., Lewis, J., Gill, B.S., Ward, R., Cregan, P.B. 2005. Development and mapping of microsatellite (SSR) markers in wheat. Theor. Appl. Genet. 110:550–560.
Worland, A.J., Korzun, V., Ganal, M.W., Roder, M., Law, C.N. 1998. Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor. Appl. Genet. 96:1110–1120.