View More View Less
  • 1 ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
  • 2 ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan (VPKAS), Almora, India
  • 3 C.S.K. Himachal Pradesh Krishi Viswavidyalaya (CSK-HPKV), Bajaura Centre, India
  • 4 Borlaug Institute for South Asia (BISA), New Delhi, India
Restricted access

Carotenoids play vital role in growth and development of human beings. Yellow maize kernel contains carotenoids that possess provitamin A and antioxidant activity. Multilocation based analyses of 105 maize inbreds of indigenous and exotic origin revealed wide genetic variation for lutein (0.2–11.3 μg/g), zeaxanthin (0.2–20.0 μg/g) and β-carotene (0.0–15.0 μg/g). For β-cryptoxanthin, low variation (0.1–3.3 μg/g) was observed. Carotenoids were quite stable over environments that played minor role in causing variation. The heritability (>90%) and genetic advance (>75%) were high for all the carotenoid components. Zeaxanthin showed positive correlation with lutein and β-cryptoxanthin, while β-carotene, the major provitamin A carotenoid, did not show correlation with other carotenoids. Kernel colour was positively correlated with lutein (0.25), zeaxanthin (0.47) and β-cryptoxanthin (0.44), but not with β-carotene (0.04). This suggested that visual selection based on kernel colour will be misleading in selecting provitamin A-rich genotypes. Inbreds with provitamin A and non-provitamin A carotenoids identified in the present study will help in development of biofortified maize hybrids.

  • Aluru, M., Xu, Y., Guo, R., Wang, Z., Li, S., White, W., Wang, K., Roderme, S. 2008. Generation of transgenic maize with enhanced provitamin A content. J. Exp. Bot. 59:35513562.

    • Search Google Scholar
    • Export Citation
  • Babu, R., Rojas, N.P., Gao, S., Yan, J., Pixley, K. 2013. Validation of the effects of molecular marker polymorphisms in lcyE and crtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor. Appl. Genet. 126:389399.

    • Search Google Scholar
    • Export Citation
  • Black, R.E., Allen, L.H., Bhutta, Z.A., Caulfield, L.E., de Onis, M., Ezzati, M., Mathers, C., Rivera, J., Maternal Child Under Nutrition Study Group. 2008. Maternal and child under nutrition: global and regional exposures and health consequences. Lancet 371:243260.

    • Search Google Scholar
    • Export Citation
  • Bouis, H.E., Welch, R.M. 2010. Biofortification — a sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Sci. 50:S20–S32.

  • Buckner, B., Kelson, T.L., Robertson, D.S. 1990. Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids. Plant Cell 2:867876.

    • Search Google Scholar
    • Export Citation
  • Chander, S., Meng, Y., Zhang, Y., Yan, J., Li, J. 2008. Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. J. Agric. Food Chem. 56:65066511.

    • Search Google Scholar
    • Export Citation
  • Dauchet, L., Amouyel, P., Dallongeville, J. 2009. Fruits, vegetables and coronary heart disease. Nat. Rev. Cardiol. 6:599608.

  • DellaPenna, D., Pogson, B.J. 2006. Vitamin synthesis in plants: Tocopherols and carotenoids. Ann. Rev. Plant Biol. 57:711738.

  • Egesel, C.O., Wong, J.C., Lambert, R.J., Rocheford, T.R. 2003. Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci. 43:818823.

    • Search Google Scholar
    • Export Citation
  • Frano, M.R.L., de Moura, F.F., Boy, E., Lonnerdal, B., Burri, B.J. 2014. Bioavailability of iron, zinc, and provitamin A in biofortified staple crops. Nut. Rev. 72:289307.

    • Search Google Scholar
    • Export Citation
  • Fraser, B.D., Bramley, P.M. 2004. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Res. 43:228265.

  • Galobart, J., Sala, R., Rincon-Carruyo, X., Manzanilla, E.G., Vila, B., Gasa, J. 2004. Egg yolk color as affected by saponification of different natural pigmenting sources. J. Appl. Poult. Res. 13:328334.

    • Search Google Scholar
    • Export Citation
  • Gupta, H.S., Babu, R., Agrawal, P.K., Mahajan, V., Hossain, F., Nepolean, T. 2013. Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breeding 132:7782.

    • Search Google Scholar
    • Export Citation
  • Harjes, C.E., Rocheford, T.R., Bai, L., Brutnell, T.P., Kandianis, C.B., Sowinski, S.G., Stapleton, A.E., Vallabhaneni, R., William, M., Wurtzel, E.T., Yan, J., Buckler, E.S. 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330333.

    • Search Google Scholar
    • Export Citation
  • Hess, S.Y., Thurnham, D.I., Hurrell, R.F. 2005. Influence of provitamin A carotenoids on iron, zinc, and vitamin A status. HarvestPlus Technical Monograph 6. Harvest Plus. Washington DC, USA. 28 p.

    • Search Google Scholar
    • Export Citation
  • Howitt, C.A., Pogson, B.J. 2006. Carotenoid accumulation and functions in seeds and non-green tissues. Plant, Cell Env. 29:435445.

  • Johnson, M.P., Havaux, M., Triantaphylides, C., Ksas, B., Pascal, A.A., Robert, B., Davison, P.A., Ruban, A.V., Horton, P. 2007. Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of Arabidopsis to photooxidative stress by a lipid-protective, antioxidant mechanism. J. Biol. Chem. 282:2260522618.

    • Search Google Scholar
    • Export Citation
  • Kurilich, A., Juvik, J. 1999. Quantification of carotenoid and tocopherol antioxidants in Zea mays. J. Agric. Food Chem. 47:19481955.

    • Search Google Scholar
    • Export Citation
  • Liu, Y.Q., Davis, C.R., Schmaelzle, S.T., Rocheford, T., Cook, M.E., Tanumihardjo, S.A. 2012. ß-Cryptoxanthin biofortified maize (Zea mays) increases ß-cryptoxanthin concentration and enhances the color of chicken egg yolk. Poultry Sci. 91:432438.

    • Search Google Scholar
    • Export Citation
  • Lokaewmanee, K., Yamauchi, K., Tsutomu, K., Saito, K. 2010. Effects on egg yolk color of paprika or paprika combined with marigold flower extracts. Ital. J. Anim. Sci. 9:356359.

    • Search Google Scholar
    • Export Citation
  • Mendis, S., Lindholm, L.H., Anderson, S.G., Alwan, A., Koju, R., Onwubere, B.J., Kayani, A.M., Abeysinghe, N., Duneas, A., Tabagari, S., Fan, W., Sarraf-Zadegan, N., Nordet, P., Whitworth, J., Heagerty, A. 2011. Total cardiovascular risk approach to improve efficiency of cardiovascular prevention in resource constrain settings. J. Clin. Epidemiol. 64:14511462.

    • Search Google Scholar
    • Export Citation
  • Menkir, A., Liu, W., White, W.S., Maziya-Dixon, B., Rocheford, T. 2008. Carotenoid diversity in tropicaladapted yellow maize inbred lines. Food Chem. 109:521529.

    • Search Google Scholar
    • Export Citation
  • Menkir, A., Maziya-Dixon, B. 2004. Influence of genotype and environment on ß-carotene content on tropical yellow endosperm maize genotypes. Maydica 49:313318.

    • Search Google Scholar
    • Export Citation
  • Mishra, P., Singh, N.K. 2010. Spectrophotometric and TLC based characterization of kernel carotenoids in short duration maize. Maydica 55:95100.

    • Search Google Scholar
    • Export Citation
  • Nambara, E., Marion-Poll, A. 2005. Abscisic acid biosynthesis and catabolism. Ann. Rev. Plant Biol. 56:165185.

  • Olson, J.A. 1989. Biological actions of carotenoids. J. of Nutrition 119:9495.

  • Pfeiffer, W.H., McClafferty, B. 2007. HarvestPlus: Breeding crops for better nutrition. Crop Sci. 47:S88–S105.

  • Pixley, K.V., Palacios, N., Glahn, R.P. 2011. The usefulness of iron bioavailability as a target trait for breeding maize (Zea mays L.) with enhanced nutritional value. Field Crops Res. 123:153160.

    • Search Google Scholar
    • Export Citation
  • Prasanna, B.M., Pixley, K.V., Warburton, M., Xie, C. 2010. Molecular marker-assisted breeding for maize improvement in Asia. Mol. Breed. 26:339356.

    • Search Google Scholar
    • Export Citation
  • Quackenbush, F.W. 1963. Corn carotenoids: effects of temperature and moisture on losses during storage. Cereal Chem. 40:266269.

  • SAS Institute Inc. 2005. SAS/Genetics TM 9.1.3 User’s Guide. SAS Institute Inc. Cary, NC, USA.

  • Rosegrant, M.R., Ringler, C., Sulser, T.B., Ewing, M., Palazzo, A., Zhu, T. 2009. Agriculture and Food Security under Global Change: Prospects for 2025/2050. IFPRI. Washington, D.C., USA.

    • Search Google Scholar
    • Export Citation
  • Shiferaw, B., Prasanna, B.M., Hellin, J., Banziger, M. 2011. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security 3:307327.

    • Search Google Scholar
    • Export Citation
  • Singh, R.K., Chaudhary, B.D. 1985. Biometrical methods in quantitative genetic analysis, Kalyani Publishers. New Delhi, India.

  • Sivaranjani, R., Prasanna, B.M., Hossain, F., Santha, I.M. 2013. Genetic variability for total carotenoid concentration in selected maize inbred lines. Indian J. Agr. Sci. 83:431436.

    • Search Google Scholar
    • Export Citation
  • Sivaranjani, R., Santha, I.M., Pandey, N., Vishwakarma, A.K., Nepolean, T., Hossain, F. 2014. Microsatellitebased genetic diversity in selected exotic and indigenous maize (Zea mays L.) inbred lines differing in total kernel carotenoids. Indian J. Genet. 74:3441.

    • Search Google Scholar
    • Export Citation
  • Tanumihardjo, S.A., Anderson, C., Kaufer-Horwitz, M., Bode, L., Emenaker, N.J., Haqq, A.M., Satia, J.A., Silver, H., Stadler, D.D. 2007. Poverty, obesity and malnutrition: an international perspective recognizing the paradox. J. Am. Diet. Assoc. 107:19661972.

    • Search Google Scholar
    • Export Citation
  • Tiwari, A., Prasanna, B.M., Hossain, F., Guruprasad, K.N. 2012. Analysis of genetic variability for kernel carotenoid concentration in selected maize inbred lines. Indian J. Genet. 72:16.

    • Search Google Scholar
    • Export Citation
  • Vallabhaneni, R., Gallagher, C.E., Licciardello, N., Cuttriss, A.J., Quinlan, R.F., Wurtzel, E.T. 2009. Metabolite sorting of a germplasm collection reveals the hydroxylase3 locus as a new target for maize provitamin: A biofortification. Plant Physiol. 151:16351645.

    • Search Google Scholar
    • Export Citation
  • Vignesh, M., Hossain, F., Nepolean, T., Saha, S., Agrawal, P.K., Guleria, S.K., Prasanna, B.M., Gupta, H.S. 2012. Genetic variability for kernel ß-carotene and utilization of crtRB1 3’TE gene for biofortification in maize (Zea mays L.). Indian J. Genet. 72:189194.

    • Search Google Scholar
    • Export Citation
  • WHO 2009. Global prevalence of vitamin A deficiency in populations at risk 1995–2005. (http://www.who.int/nutrition/publications/micronutrients/vitamin A deficiency)

  • Wong, J.C., Lambert, R.J., Wurtzel, E.T., Rocheford, T.R. 2004. QTL and candidate genes phytoene synthase and ζ-carotene desaturase associated with the accumulation of carotenoids in maize. Theor. Appl. Genet. 108:349359.

    • Search Google Scholar
    • Export Citation
  • Yan, J., Kandianis, B.C., Harjes, E.C., Bai, L., Kim, H.E., Yang, X., Skinner, D.J., Fu, Z., Mitchell, S., Li, Q., Fernandez, G.S.M., Zaharoeva, M., Babu, R., Fu, Y., Palacios, N., Li, J., DellaPenna, D., Brutnell, T., Buckler, S.E., Warburton, L.M., Rocheford, T. 2010. Rare genetic variation at Zea mays crtRB1 increases beta carotene in maize grain. Nat. Genet. 42:322327.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Pfeiffer, W.H., Palacios-Rojas, N., Babu, R., Bouis, H., Wang, J. 2012. Probability of success of breeding strategies for improving provitamin A content in maize. Theor. Appl. Genet. 125:235246.

    • Search Google Scholar
    • Export Citation