View More View Less
  • 1 Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 21, 1113 Sofia, Bulgaria
  • | 2 Sofia University, 5 J.D. Bourchier str., 1164 Sofia, Bulgaria
  • | 3 Slovak Agricultural University, Tr. A. Hlinku 2, Nitra, 949 76, Slovakia
Restricted access

The potentials of an electrochemical and a physical technique for detection of physiological differences in three wheat cultivars under optimal growth conditions were outlined in the study. Electrolyte leakage kinetics was established by continuous measurements of conductivity of solutions in which leaf pieces were incubated for 24 hours. Impedance spectra were obtained from intact leaves at frequency range from 7 to 2010 Hz and 250 mV measuring voltage applied between two gold plated silicon substrates serving as electrodes. The obtained spectra were approximated by a model employing two ARC elements connected in series. Parameters of the previously described diffusion model based on time course conductivity measurements were inversely correlated with electrical impedance spectroscopy data, thus the genotype with highest ion leakage (cultivar Prelom) exhibited lowest impedance magnitude. It was concluded that the two methods were able not merely to distinguish the three studied cultivars but also to rank them in the same order based on their electrical properties.

  • Ackmann, J.J., Seitz, M.A. 1984. Methods of complex impedance measurement in biological tissue. CRC Crit. Rev. Biomed. Eng. 11:281311.

    • Search Google Scholar
    • Export Citation
  • Bajji, M., Kinet, J.M., Lutts S. 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 36:6170.

    • Search Google Scholar
    • Export Citation
  • Bard, A.J., Faulkner, L.R. 1980. Electrochemical Methods: Fundamentals and Applications. 1st ed. John Wiley & Sons. New York, USA.

  • Barsoukov, E., Macdonald, J.R. (eds) 2005. Impedance Spectroscopy. Theory, Experiment, and Applications. 2nd ed. John Wiley & Sons. Hoboken, New Jersey, USA.

    • Search Google Scholar
    • Export Citation
  • Blinks, L.R., Skow, R.K. 1938. The time course of photosynthesis as shown by a rapid electrode method for oxygen. Proc. Natl. Acad. Sci. USA 24:420427.

    • Search Google Scholar
    • Export Citation
  • Clark, L.C. Jr. 1956. Monitor and control of blood and tissue oxygen tension. Trans. Am. Soc. Artif. Intern. Organs 2:4148.

  • Cole, K.S., Cole, R.H. 1941. Dispersion and absorption in dielectrics. I. Alternating current characteristics. J. Chem. Phys. 9:341351.

    • Search Google Scholar
    • Export Citation
  • Cole, K.S. 1968. Membranes, Ions and Impulses, University of California Press. Berkley, Los Angeles, USA.

  • de Faria AP , Lemos-Filho J, Modolo LV, França MGC. 2013. Electrolyte leakage and chlorophyll a fluorescence among castor bean cultivars under induced water deficit. Acta Physiol. Plant. 35:119128.

    • Search Google Scholar
    • Export Citation
  • Delieu, T.J., Walker, D.A. 1981. Measurement of O2 evolution by leaf discs. New Phytol. 9:165178.

  • Evett, S. 2008. Gravimetric and volumetric direct measurements of soil water content. In: Field estimation of soil water content. A practical guide to methods, instrumentation and sensor technologies. IAEA-TCS 30. Vienna, Austria. pp. 2338.

    • Search Google Scholar
    • Export Citation
  • Farooq, S., Azam, F. 2006. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. J. Plant Physiol. 163:629637.

    • Search Google Scholar
    • Export Citation
  • Jócsák, I., Droppa, M., Horváth, G., Bóka, K., Vozáry, E. 2009. Cadmium-and flooding-induced anoxia stress in pea roots measured by electrical impedance. Z. Naturforsch. 65c:95102.

    • Search Google Scholar
    • Export Citation
  • Kell, D.B. 1987. The principles and potential of electrical admittance spectroscopy, In: Turner, A.P.F., Karube, I., Wilson, G.S. (eds), Biosensors: fundamentals and applications. Oxford University Press. New York, USA. pp. 427469.

    • Search Google Scholar
    • Export Citation
  • Klaper, M., Mathis, H. 2008. 2-Pound RLC Meter — impedance measurement using a sound card. Elektor. 6:6468.

  • Kocheva, K.V., Georgiev, G.I., Kochev, V.K. 2005. A diffusion approach to the electrolyte leakage from plant tissues. Physiol. Plant. 125:19.

    • Search Google Scholar
    • Export Citation
  • Kocheva, K.V., Georgiev, G,I., Kochev, V.K. 2014. An improvement of the diffusion model for assessment of drought stress response in plants. Physiol. Plant. 150:8894.

    • Search Google Scholar
    • Export Citation
  • Mancuso, S., Nicese, F.P., Masi, E., Azzarello, E. 2004. Comparing fractal analysis, electrical impedance and electrolyte leakage for the assessment of cold tolerance in Callistemon and Grevillea spp. J. Hort. Sci. Biotechnol. 79:627632.

    • Search Google Scholar
    • Export Citation
  • Mizukami, Y., Sawai, Y., Yamaguchi, Y. 2006. Moisture content measurement of tea leaves by electrical impedance and capacitance. Biosyst. Engin. 93:293299.

    • Search Google Scholar
    • Export Citation
  • Mizukami, Y., Yamada, K., Sawai, Y., Yamaguchi, Y. 2007. Measurement of fresh tea leaf growth using electrical impedance spectroscopy. Agricultural J. 2:134139.

    • Search Google Scholar
    • Export Citation
  • Murray, M.B., Cape, J.N., Flower, D. 1989. Quantification of frost damage in plant tissues by rates of electrolyte leakage. New Phytol. 113:307311.

    • Search Google Scholar
    • Export Citation
  • Palto, S.P. 1998. D. Sci. Thesis, Inst. Crystallogr. Ros. Acad. Nauk. Moscow, Russia.

  • Prášil, I., Zámecník, J. 1998. The use of a conductivity measurement method for assessing freezing injury. I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environ. Exp. Bot. 40:110.

    • Search Google Scholar
    • Export Citation
  • Radoglou, K., Cabral, R., Repo, T., Hasanagas, N., Sutinen, M.-L., Waisel, Y. 2007. Appraisal of root leakage as a method for estimation of root viability. Plant Biosyst. 141:443459.

    • Search Google Scholar
    • Export Citation
  • Repo, T., Zhang, M.I.N. 1993. Modeling woody plant tissues using a distributed electrical circuit. J. Exp. Bot. 44:977982.

  • Repo, T., Pulli, S. 1996. Application of impedance spectroscopy for selecting frost hardy varieties of english ryegrass. Ann. Bot. 78:605609.

    • Search Google Scholar
    • Export Citation
  • Repo, T., Zhang, G., Ryypö, A., Rikala, R. 2000. The electrical impedance spectroscopy of Scots pine (Pinus sylvestrisL.) shoots in relation to cold acclimation. J. Exp. Bot. 51:20952107.

    • Search Google Scholar
    • Export Citation
  • Roy, R., Agarwal, V., Gupta, S.C. 2009. Comparison of drought-induced polypeptides and ion leakage in three tomato cultivars. Biol. Plant. 53:685690.

    • Search Google Scholar
    • Export Citation
  • Saneoka, H., Moghaieb, R.E.A., Premachandra, G.S., Fujita, K. 2004. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environ. Exp. Bot. 52:131138.

    • Search Google Scholar
    • Export Citation
  • Simeonov, F., Kocheva, K., Georgiev, G.I., Kochev, V.K. 2013. A simple impedimetric device for in situ analysis of plant tissues. Compt. Rend. Acad. Bulg. Sci. 66:969974.

    • Search Google Scholar
    • Export Citation
  • StatSoft. 2005. STATISTICA v. 7. StatSoft Inc., Tulsa, OK, USA. Available at www.statsoft.com/textbook.

  • Whitlow, T.H., Bassuk, N.L., Ranney, T.G., Reichert, D.L. 1992. An improved method for using electrolyte leakage to assess membrane competence in plant tissues. Plant Physiol 98:198205.

    • Search Google Scholar
    • Export Citation
  • Wilner J , Brach EJ. 1979. Utilization of bioelectric tests in biological research. Engineering and Statistical Research Institute, Ottawa, ON, Canada.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., Ryyppö, A., Repo, T. 2002. The electrical impedance spectroscopy of Scots pine needles during cold acclimation. Physiol. Plant. 115:385392.

    • Search Google Scholar
    • Export Citation
  • Zhang, M.I.N., Willison, J.H.M. 1991. Electrical impedance analysis in plant tissues: a double shell model. J. Exp. Bot. 42:14651475.

    • Search Google Scholar
    • Export Citation
  • Zhang, M.I.N., Willison, J.H.M. 1992. Electrical impedance analysis in plant tissues: The effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissue. Can. J. Plant Sci. 72:545553.

    • Search Google Scholar
    • Export Citation

Click HERE for submission guidelines

Manuscript submission: CRC Manuscript Submission

 

Senior editors

Editor(s)-in-Chief: Pauk, János

Technical Editor(s): Hajdu Buza, Kornélia

Technical Editor(s): Lantos, Csaba

Editorial Board

  • A. Aniol (Poland)
  • P. S. Baenziger (USA)
  • R.K. Behl (India)
  • F. Békés (Australia)
  • L. Bona (Hungary)
  • A. Börner (Germany)
  • R. N. Chibbar (Canada)
  • S. Gottwald (Germany)
  • A. Goyal (Canada)
  • H. Grausgruber (Austria)
  • T. Harangozó (Hungary)
  • E. Kapusi (Austria)
  • E.K. Khlestkina (Russia)
  • J. Kolmer (USA)
  • V. Korzun (Germany)
  • R. A. McIntosh (Australia)
  • Á. Mesterházy (Hungary)
  • A. Mohan (USA)
  • I. Molnár (Hungary)
  • M. Molnár-Láng (Hungary)
  • A. Pécsváradi (Hungary)
  • S. K. Rasmussen (Denmark)
  • N. Rostoks (Latvia)
  • M. Taylor (Germany)
  • J. Zhang (China)
  • X.F. Zhang (USA)

 

Senior Editorial Board

  • P. Bartos (Czech Republic)
  • H. Bürstmayr (Austria)
  • J. Johnson (USA)
  • Z. Kertész (Hungary)
  • G. Kimber (USA)
  • J. Matuz (Hungary)

Cereal Research Communications
Cereal Research Non-Profit Ltd. Company
Address: P.O. Box 391, H-6701 Szeged, Hungary
Phone: +36 62 435 235
Fax: +36 62 420 101
E-mail: crc@gk-szeged.hu

Indexing and Abstracting Services:

  • AgBiotechNet Abstracts
  • Agricola
  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Current Contents/Agriculture
  • Biology & Environmental Sciences
  • ISI Web of Science/li>
  • Science Citation Index Expanded
  • SCOPUS

 

Cereal Research Communications
Language English
Size B5
Year of
Foundation
1973
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3720 (Print)
ISSN 1788-9170 (Online)