Authors:
D.J. Liu Harbin Normal University, Harbin 150025, China
Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

Search for other papers by D.J. Liu in
Current site
Google Scholar
PubMed
Close
,
Y.B. Wang Harbin Normal University, Harbin 150025, China
Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

Search for other papers by Y.B. Wang in
Current site
Google Scholar
PubMed
Close
,
C.H. Guo Harbin Normal University, Harbin 150025, China

Search for other papers by C.H. Guo in
Current site
Google Scholar
PubMed
Close
,
Q. Cong Harbin Normal University, Harbin 150025, China

Search for other papers by Q. Cong in
Current site
Google Scholar
PubMed
Close
,
X. Gong Harbin Normal University, Harbin 150025, China

Search for other papers by X. Gong in
Current site
Google Scholar
PubMed
Close
, and
H.J. Zhang Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

Search for other papers by H.J. Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Iron deficiency is the most common nutritional disorder, affecting over 30% of the world’s human population. The primary method used to alleviate this problem is nutrient biofortification of crops so as to improve the iron content and its availability in food sources. The over-expression of ferritin is an effective method to increase iron concentration in transgenic crops. For the research reported herein, sickle alfalfa (Medicago falcata L.) ferritin was transformed into wheat driven by the seed-storage protein glutelin GluB-1 gene promoter. The integration of ferritin into the wheat was assessed by PCR, RT-PCR and Western blotting. The concentration of certain minerals in the transgenic wheat grain was determined by inductively coupled plasma-atomic emission spectrometry, the results showed that grain Fe and Zn concentration of transgenic wheat increased by 73% and 44% compared to nontransformed wheat, respectively. However, grain Cu and Cd concentration of transgenic wheat grain decreased significantly in comparison with non-transformed wheat. The results suggest that the over-expression of sickle alfalfa ferritin, controlled by the seed-storage protein glutelin GluB-1 gene promoter, increases the grain Fe and Zn concentration, but also affects the homeostasis of other minerals in transgenic wheat grain.

  • Amiri, R., Bahraminejad, S., Sasani, S., Jalali-Honarmand, S., Fakhri, R. 2015. Bread wheat genetic variation for grain’s protein, iron and zinc concentrations as uptake by their genetic ability. Eur. J. Agron. 67:2026.

    • Search Google Scholar
    • Export Citation
  • Borg, S., Brinch-Pedersen. H., Tauris, B., Madsen, L.H., Darbani, B., Noeparvar, S., Holm, P.B. 2012. Wheat ferritins: Improving the iron content of the wheat grain. J. Cereal Sci. 56:204213.

    • Search Google Scholar
    • Export Citation
  • Cui, S.P., Kang, Z.S., Jie, Z.H., Yu, X.M. 2006. A method of quickly extracting total RNA from wheat leaves. Acta Bot. Boreali-Occident. Sin. 26:314318. (in Chinese)

    • Search Google Scholar
    • Export Citation
  • Drakakaki, G., Christou, P., Stöger, E. 2000. Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Res. 9:445452.

    • Search Google Scholar
    • Export Citation
  • Drakakaki, G., Marcel, S., Glahn, R.P., Lund, E.K., Pariagh, S., Fischer, R., Christou, P., Stoger, E. 2005. Endosperm-specific co-expression of recombinant soybean ferritin and aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol. Biol. 59:869880.

    • Search Google Scholar
    • Export Citation
  • Eagling, T., Neal, A.L., McGrath, S.P., Fairweather-Tait, S., Shewry, P.R., Zhao, F.J. 2014. Distribution and speciation of iron and zinc in grain of two wheat genotypes. J. Agric. Food Chem. 62:708716.

    • Search Google Scholar
    • Export Citation
  • Fernando, N., Panozzo, J., Tausz, M., Norton, R.M., Neumann, N., Fitzgerald, G.J. 2014. Elevated CO2 alters grain quality of two bread wheat cultivars grown under different environmental conditions. Agr. Ecosyst. Environ. 185:2433.

    • Search Google Scholar
    • Export Citation
  • Gomez-Galera, S., Rojas, E., Sudhakar, D., Zhu, C., Pelacho, A.M., Capell, T., Christou, P. 2010. Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res. 19:165180.

    • Search Google Scholar
    • Export Citation
  • Goto, F., Yoshihara, T., Saiki, H. 1998. Iron accumulation in tobacco plants expressing soybean ferritin gene. Transgenic Res. 7:173180.

    • Search Google Scholar
    • Export Citation
  • Goto, F., Yoshihara, T., Saiki, H. 2000. Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor. Appl. Genet. 100:658664.

    • Search Google Scholar
    • Export Citation
  • Goto, F., Yoshihara, T., Shigemoto, N., Toki, S., Takaiwa, F. 1999. Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol. 17:282286.

    • Search Google Scholar
    • Export Citation
  • Guo, C.H, Wang, Y.B., Li, L.Y., Sha, Y.Q. 2008. Cloning and sequence analyzing of ferritin cDNA from Medicago falcate L. J. of Harbin Institute of Technol. 41:141145. (in Chinese)

    • Search Google Scholar
    • Export Citation
  • Gupta, P.K., Mir, R.R., Mohan, A., Kumar, J. 2008. Wheat genomics: present status and future prospects. Int. J. Plant Genomics. Free PMC article. doi: 10.1155/2008/896451. pp. 136. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2397558/

    • Search Google Scholar
    • Export Citation
  • Kanobe, M.N., Rodermel, S.R., Bailey, T., Scott, M.P. 2013. Changes in endogenous gene transcript and protein levels in maize plants expressing the soybean ferritin transgene. Front Plant Sci. 4:196.

    • Search Google Scholar
    • Export Citation
  • Koorts, A.M., Viljoen, M. 2007. Ferritin and ferritin isoforms I: Structure–function relationships, synthesis, degradation and secretion. Arch. Physiol. Biochem. 113:3054.

    • Search Google Scholar
    • Export Citation
  • Kutman, U.B., Yildiz, B., Ozturk, L., Cakmak, I. 2010. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem. 87:19.

    • Search Google Scholar
    • Export Citation
  • Liu, H., Wang, Z.H., Li, F., Li, K., Yang, N., Yang, Y. 2014. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crop Res. 156:151160.

    • Search Google Scholar
    • Export Citation
  • Lucca, P., Hurrell, R., Potrykus, I. 2001. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. 102:392397.

    • Search Google Scholar
    • Export Citation
  • Lucca, P., Hurrell, R., Potrykus, I. 2002. Fighting iron deficiency anemia with iron-rich rice. J. Am. Coll. Cardiol. 21:184S–190S.

  • Masuda, H., Ishimaru, Y., Aung, M.S., Kobayashi, T., Kakei, Y., Takahashi, M., Higuchi, K., Nakanishi, H., Nishizawa, N.K. 2012. Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci. Rep. 2:543.

    • Search Google Scholar
    • Export Citation
  • Masuda, H., Kobayashi, T., Ishimaru, Y., Takahashi, M., Aung, M.S., Nakanishi, H., Mori, S., Nishizawa, N.K. 2013. Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front Plant Sci. 4:132.

    • Search Google Scholar
    • Export Citation
  • Oury, F.X., Leenhardt, F., Rémésy, C., Chanliaud, E., Duperrier, B., Balfourier, F., Charmet, G., 2006. Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur. J. Agron. 25:177185.

    • Search Google Scholar
    • Export Citation
  • Ozturk, L., Yazici, M.A., Yucel, C., Torun, A., Cekic, C., Bagci, A., Ozkan, H., Braun, H.-J., Sayers, Z., Cakmak, I. 2006. Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum 128:144152.

    • Search Google Scholar
    • Export Citation
  • Paul, S., Ali, N., Gayen, D., Datta, S.K., Datta, K. 2012. Molecular breeding of Osfer 2 gene to increase iron nutrition in rice grain. GM Crops and Food 3:310316.

    • Search Google Scholar
    • Export Citation
  • Qu, L., Yoshihara, T., Ooyama, A. Goto, F. Takaiwa, F. 2005. Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225233.

    • Search Google Scholar
    • Export Citation
  • Quan, J.L., He, Y.K., Chen, Y.f., Li, C.L., Guo, D.W., Han, D.J., Ling, Y. 2007. Establishment of efficient acceptor system for gene transformation by microprojectile bombardment in wheat. J. Northwest A&F Univ. (Natural Science Edition). 35:117122. (in Chinese)

    • Search Google Scholar
    • Export Citation
  • Regvar, M., Eichert, D., Kaulich, B., Gianoncelli, A., Pongrac, P., Vogel-Mikus, K., Kreft, I. 2011. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy. J. Exp. Bot. 62:39293939.

    • Search Google Scholar
    • Export Citation
  • Shi, R.l., Zou, C.Q., Rui, Y.K., Zhang, X.Y., Xia, X.P., Zhang, F.S. 2009. Application of ICP-AES to detecting nutrients in grain of wheat core collection of China. Spectroscopy and Spectral Analysis 29:11041107.

    • Search Google Scholar
    • Export Citation
  • Shi, R.L., Tong, Y.P., Jing, R.L., Zhang, F.S., Zou, C.Q. 2013. Characterization of quantitative trait loci for grain minerals in hexaploid wheat (Triticum aestivum L.). J. Integr. Agr. 12:15121521.

    • Search Google Scholar
    • Export Citation
  • Sui, X., Zhao, Y., Wang, S., Duan, X., Xu, L., Liang, R. 2012. Improvement Fe content of wheat (Triticum aestivum) grain by soybean ferritin expression cassette without vector backbone sequence. J. Agric. Biotechnol. 20:766773. (in Chinese)

    • Search Google Scholar
    • Export Citation
  • Syltie, P.W., Dahnke, W.C. 2005. Mineral and protein content, test weight and yield variations of hard spring wheat grain as influenced by fertilization and cultivar. Plant Food Human Nutri. 32:3239.

    • Search Google Scholar
    • Export Citation
  • Vasconcelos, M., Datta, K., Oliva, N., Khalekuzzaman, M., Torrizo, L., Krishnan, S., Oliveira, M., Goto, F., Datta, S.K. 2003. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 164:371378.

    • Search Google Scholar
    • Export Citation
  • WHO 2014. Micronutrient deficiencies. http://www.who.int/nutrition/topics/ida/en/

  • Zhang, Y. , Wang, D.S., Zhang, Y., He, Z.H. 2007. Variation of major mineral elements concentration and their relationships in grain of Chinese wheat. Scientia Agricultura Sinica. 40:18711876.

    • Search Google Scholar
    • Export Citation
  • Zhao, F.J., Su, Y.H., Dunham, S.J., Rakszegi, M., Bedo, Z., McGrath, S.P., Shewry, P.R., 2009. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 49:290295.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

 

 

For subscription options, please visit the website of Springer Nature.

Cereal Research Communications
Language English
Size A4
Year of
Foundation
1973
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3720 (Print)
ISSN 1788-9170 (Online)