View More View Less
  • 1 China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
  • 2 Jiangxi Academy of Agricultural Sciences and Nanchang National Sub-center for Rice Improvement, Nanchang 330200, Jiangxi, China
Restricted access

Biofortifying food crops with essential minerals would help to alleviate mineral deficiencies in humans. Detection of quantitative trait loci (QTLs) for mineral nutrient contents in rice was conducted using backcross inbred lines derived from an interspecific cross of Oryza sativa × O. rufipogon. The population was grown in Hangzhou and Lingshui, with the contents of Mg, Zn, Fe, Mn, Cu and Se in brown rice measured in both trials and that in milled rice tested in Hangzhou only. A total of 24 QTLs for mineral element contents were identified, including two for both the brown and milled rice, 17 for brown rice only, and five for milled rice only. All the seven QTLs detected for the mineral contents in milled rice and 13 of the 19 QTLs for the contents in brown rice had the enhancing alleles derived from O. rufipogon. Fifteen QTLs were clustered in seven chromosomal regions, indicating that common genetic-physiological mechanisms were involved for different mineral nutrients and the beneficial alleles could be utilized to improve grain nutritional quality by markerassisted selection.

  • Anandan, A., Rajiv, G., Eswaran, R., Prakash, M. 2011. Genotypic variation and relationships between quality traits and trace elements in traditional and improved rice (Oryza sativa L.) genotypes. J. Food Sci. 76:122130.

    • Search Google Scholar
    • Export Citation
  • Anuradha, K., Agarwal, S., Rao, Y.V., Rao, K.V., Viraktamath, B.C., Sarla, N. 2012. Mapping QTLs and candidate genes for iron and zinc contents in unpolished rice of Madhukar × Swarna RILs. Gene 508:233240.

    • Search Google Scholar
    • Export Citation
  • Bashir, K., Takahashi, R., Nakanishi, H., Nishizawa, N.K. 2013. The road to micronutrient biofortification of rice: progress and prospects. Front. Plant Sci. 4:15.

    • Search Google Scholar
    • Export Citation
  • Bhullar, N.K., Gruissem, W. 2013. Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotech. Adv. 31:5057.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Bughio, H., Ur, R., Chen, D.-Z., Liu, G.-J., Zheng, K.L., Zhuang, J.-Y. 2006. Development of chromosomal segment substitution lines from a backcross recombinant inbred population of interspecific rice cross. Rice Sci. 13:1521.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Huang, D.R., Wang, L., Liu, G.J., Zhuang, J.Y. 2010. Identification of quantitative trait loci for resistance to whitebacked planthopper, Sogatella furcifera, from an interspecific cross Oryza sativa × O. rufipogon. Breeding Sci. 60:153159.

    • Search Google Scholar
    • Export Citation
  • Du, J., Zeng, D.L., Wang, B., Qian, Q., Zheng, S.S., Ling, H.Q. 2013. Environmental effects on mineral accumulation in rice grains and identification of ecological specific QTLs. Environ. Geochem. Health 35:161170.

    • Search Google Scholar
    • Export Citation
  • Garcia-Oliveira, A.L., Tan, L.B., Fu, Y.C., Sun, C.Q. 2009. Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J. Integr. Plant Biol. 51:8492.

    • Search Google Scholar
    • Export Citation
  • Gregorio, G.B., Senadhira, D., Htut, T., Graham, R.D. 2000. Breeding for trace mineral density in rice. Food Nutr. Bull. 21:382386.

  • Huang, D.R., Chen, J., Hou, L.J., Fan, Y.Y., Zhuang, J.Y. 2008. Identification of QTLs for yield traits in the BC1F5 population of Xieqingzao B//Xieqingzao B/Dongxiang wild rice. J. Agri. Biotech. 16:977982. (in Chinese with English abstract)

    • Search Google Scholar
    • Export Citation
  • Jiang, S.L., Shi, C.H., Wu, J.G. 2009. Studies on mineral nutrition and safety of wild rice (Oryza L.). Inter. J. Food Sci. Nutr. 60:139147.

    • Search Google Scholar
    • Export Citation
  • Lu, K.Y., Li, L.Z., Zheng, X.F., Zhang, Z.H., Mou, T.M., Hu, Z.L. 2008. Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J. Genet. 87:305310.

    • Search Google Scholar
    • Export Citation
  • McCouch, S.R., CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative) 2008. Gene nomenclature system for rice. Rice 1:7284.

    • Search Google Scholar
    • Export Citation
  • Norton, G.J., Deacon, C.M., Xiong, L.Z., Huang, S.Y., Meharg, A.A., Price, A.H. 2010. Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139153.

    • Search Google Scholar
    • Export Citation
  • Norton, G.J., Duan, G.L., Lei, M., Zhu, Y.G., Meharg, A.A., Price, A.H. 2012. Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: influence of flowering time on genetic loci. Ann. Appl. Biol. 161:4656.

    • Search Google Scholar
    • Export Citation
  • Paul, S., Ali, N., Gayen, D., Datta, S.K., Datta, K. 2012. Molecular breeding of Osfer2 gene to increase iron nutrition in rice grain. GM Crops Food Biotechnol. Agric. Food Chain 4:310316.

    • Search Google Scholar
    • Export Citation
  • Peleg, Z., Cakmak, I., Ozturk, L., Yazici, A., Jun, Y., Budak, H., Korol, A.B., Fahima, T., Saranga, Y. 2009. Quantitative trait loci conferring grain mineral nutrient contents in durum wheat × wild emmer wheat RIL population. Theor. Appl. Genet. 119:353369.

    • Search Google Scholar
    • Export Citation
  • Rawat, N., Neelam, K., Tiwari, V.K., Dhaliwal, H.S. 2013. Biofortification of cereals to overcome hidden hunger. Plant Breeding 132:437455.

    • Search Google Scholar
    • Export Citation
  • Simic, D., Mladenovic, D.S., Zdunic, Z., Jambrovic, A., Ledencan, T., Brkic, J., Brkic, A., Brkic, I. 2012. Quantitative trait loci for biofortification traits in maize grain. J. Hered. 103:4754.

    • Search Google Scholar
    • Export Citation
  • Stein, A.J. 2010. Global impacts of human mineral malnutrition. Plant Soil 335:133154.

  • Tanksley, S.D., McCouch, S.R. 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:10631066.

  • Wang, S.C., Basten, C.J., Zeng, Z.B. 2012. Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USA. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Yang, X., Huang, J., Jiang, Y., Zhang, H.S. 2009. Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol. Biol. Rep. 36:281287.

    • Search Google Scholar
    • Export Citation
  • Yang, M., Zhang, W., Dong, H.X., Zhang, Y.Y., Lv, K., Wang, D.J., Lian, X.M. 2013. OsNRAMP3 is a vascular bundles-specific manganese transporter that is responsible for manganese distribution in rice. PLoS ONE 8:e83990. doi:10.1371/journal.pone.0083990.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., Pinson, S.R.M., Tarpley, L., Huang, X.Y., Lahner, B., Yakubova, E., Baxter, I., Guerinot, M.L., Salt, D.E. 2014. Mapping and validation of quantitative trait loci associated with contents of 16 elements in unmilled rice grain. Theor. Appl. Genet. 127:137165.

    • Search Google Scholar
    • Export Citation