View More View Less
  • 1 Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria
Restricted access

A high number of protease inhibitors (PI) have been identified in diverse plant species but information about their role in plant stress responses is still fragmentary. Transcript profiling of six published serine and cysteine protease inhibitor sequences in water-deprived plants from four winter wheat (Triticum aestivum) varieties with varying tolerance was performed in order to outline PIs predominantly accumulating under drought. Expression was analyzed by real time RT-qPCR. Considerable transcript accumulation of Bowman-Birk type PI WALI3 (BBPI) was detected in drought stressed leaves suggesting an important regulatory role of BBPI in adjustment of protein metabolism in leaves under dehydration. Serpin transcripts were less represented in water-deprived plants. Transient accumulation of cystatin transcripts revealed organ-specificity. Under drought cystatin and serpin expression in the leaves of the most drought tolerant variety “Katya” tended to preserve relatively stable levels close to the controls. This preliminary data will serve for future detailed study of regulation of proteolysis in winter wheat subjected to unfavorable environmental factors for development of molecular-based strategies for selection of tolerant varieties.

  • Barrs, C., Weatherley, P.E. 1968. A re-examination of the relative turgidity technique forestimating water deficit in leaves. Aust. J. Biol. Sci. 15:413428.

    • Search Google Scholar
    • Export Citation
  • Christova, P.K., Christov, N.K., Imai, R. 2006. A cold inducible multidomain cystatin from winter wheat inhibits growth of the snow mold fungus, Microdochium nivale. Planta 223:12071218. de

    • Search Google Scholar
    • Export Citation
  • Almeida, B.B., da Silva, W.G., Moreira, M.A., de Barros, E.G. 2012. In silico characterization and expression analysis of the multigene family encoding the Bowman–Birk protease inhibitor in soybean. Mol. Biol. Rep. 39:327334.

    • Search Google Scholar
    • Export Citation
  • Diop, N.N., Kidric, M., Repellina, A., Gareila, M., d’Arcy-Lameta, A., Pham Thi, A.T., Zuily-Fodil, Y. 2004. A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Letters 577:545550. Dramé, K.N.,

    • Search Google Scholar
    • Export Citation
  • Passaquet, C., Repellin, A., Zuily-Fodil, Y. 2013. Cloning, characterization and differential expression of a Bowman-Birk inhibitor during progressive water deficit and subsequent recovery in peanut (Arachis hypogaea) leaves. J. Plant Physiol. 170:225229.

    • Search Google Scholar
    • Export Citation
  • Feldman, M.L., Andreu, A.B., Korgan, S., Lobato, M.C., Huarte, M., Walling, L.L., Daleo, G.R. 2014. PLPKI: A novel serine protease inhibitor as a potential biochemical marker involved in horizontal resistance to Phytophthora infestans. Plant Breeding 133:275280.

    • Search Google Scholar
    • Export Citation
  • Fluhr, R., Lampl, N., Roberts, T.H. 2012. Serpin protease inhibitors in plant biology. Physiologia Plantarum 145:95102.

  • Jangpromma, N., Saito, A., Araki, T., Jaisil, P., Songsri, P., Daduang, S., Kawaguchi, Y., Dhiravisit, A., Thammasirirak, S. 2014. Molecular cloning and characterization in eukaryotic expression systems of a sugarcane cysteine protease inhibitor gene involved in drought tolerance. Turkish J. of Bot. 38:724736.

    • Search Google Scholar
    • Export Citation
  • Kidric, M., Kos, J., Sabotic, J. 2014. Proteases and their endogenous inhibitors in the plant response to abiotic stress. Botanica Serbica 38:139158.

    • Search Google Scholar
    • Export Citation
  • Lampl, N., Alkan, N., Davydov, O., Fluhr, R. 2013. Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis. The Plant J. 74:498510.

    • Search Google Scholar
    • Export Citation
  • Livak, K.J., Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCq method. Methods 25:402408.

    • Search Google Scholar
    • Export Citation
  • López-Otín, C., Bond, J.S. 2008. Proteases: multifunctional enzymes in life and disease. The J. of Biol. Chem. 283:3043330437.

  • Ma, S., Gong, Q., Bohnert, H.J. 2006. Dissecting salt stress pathways. J. Exp. Bot. 57:10971107.

  • Martínez, M., Cambra, I., González-Melendi, P., Santamaría, M.E., Díaz, I. 2012. C1A cysteine-proteases and their inhibitors in plants. Physiologia Plantarum Spec. Iss. Plant Proteases 145:8594.

    • Search Google Scholar
    • Export Citation
  • Massonneau, A., Condamine, P., Wisniewski, J.P., Zivy, M., Rogowsky, P.M. 2005. Maize cystatins respond to developmental cues, cold stress and drought. Biochimica et Biophysica Acta 1729:186199.

    • Search Google Scholar
    • Export Citation
  • Mosolov, V.V., Valueva, T.A. 2005. Proteinase inhibitors and their function in plants: a review. Applied Biochem. and Microbiol. 41:261282.

    • Search Google Scholar
    • Export Citation
  • Pernas, M., Sanchez-Monge, R., Salcedo, G. 2000. Biotic and abiotic stress can induce cystatin expression in chestnut. FEBS Letters 467:206210.

    • Search Google Scholar
    • Export Citation
  • Quain, M.D. , Makgopa, M.E., Marquez-Garcia, B., Comadira, G., Fernandez-Garcia, N., Olmos, E., Schnaubelt, D., Kunert, K.J., Foyer, C.H. 2014: Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnol. J. 12:903913.

    • Search Google Scholar
    • Export Citation
  • Rawlings, N.D., Waller, M., Barrett, A.J., Bateman, A. 2014. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42:D503D509.

    • Search Google Scholar
    • Export Citation
  • Shan, L., Li, C., Chen, F., Zhao, S., Xia, G. 2008. A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Environ. 31:11281137.

    • Search Google Scholar
    • Export Citation
  • Simova-Stoilova, L., Vaseva, I., Grigorova, B., Demirevska, K., Feller, U. 2010. Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol. and Biochem. 48:200206.

    • Search Google Scholar
    • Export Citation
  • Simova-Stoilova, L., Vassileva, V., Petrova, T., Tsenov, N., Demirevska, K., Feller, U. 2006. Proteolytic activity in wheat leaves during drought stress and recovery. General and Appl. Plant Physiol. Special Issue:91100.

    • Search Google Scholar
    • Export Citation
  • Snowden, K.C., Gardner, R.C. 1993. Five genes induced by aluminum in wheat (Triticum aestivum L.) roots. Plant Physiol. 103:855861.

  • Wang, M., Qin, L., Xie, C., Li, W., Yuan, J., Kong, L., Yu, W., Xia, G., Liu, S. 2014. Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant Cell Physiol. 55:13541365.

    • Search Google Scholar
    • Export Citation
  • Yarullina, L.G., Veselova, S.V., Ibragimov, R.I., Shpirnaya, I.A., Kasimova, R.I., Akhatova, A.R., Tsvetkov, V.O., Maksimov, I.V. 2014. Search for molecular markers of wheat resistance to fungal pathogens. Agric. Sci. 5:722729.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Liu, S., Takano, T. 2008. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol. Biol. 68:131143.

    • Search Google Scholar
    • Export Citation

Click HERE for submission guidelines

Manuscript submission: CRC Manuscript Submission

 

Senior editors

Editor(s)-in-Chief: Pauk, János

Technical Editor(s): Hajdu Buza, Kornélia

Technical Editor(s): Lantos, Csaba

Editorial Board

  • A. Aniol (Poland)
  • P. S. Baenziger (USA)
  • R.K. Behl (India)
  • F. Békés (Australia)
  • L. Bona (Hungary)
  • A. Börner (Germany)
  • R. N. Chibbar (Canada)
  • S. Gottwald (Germany)
  • A. Goyal (Canada)
  • H. Grausgruber (Austria)
  • T. Harangozó (Hungary)
  • E. Kapusi (Austria)
  • E.K. Khlestkina (Russia)
  • J. Kolmer (USA)
  • V. Korzun (Germany)
  • R. A. McIntosh (Australia)
  • Á. Mesterházy (Hungary)
  • A. Mohan (USA)
  • I. Molnár (Hungary)
  • M. Molnár-Láng (Hungary)
  • A. Pécsváradi (Hungary)
  • S. K. Rasmussen (Denmark)
  • N. Rostoks (Latvia)
  • M. Taylor (Germany)
  • J. Zhang (China)
  • X.F. Zhang (USA)

 

Senior Editorial Board

  • P. Bartos (Czech Republic)
  • H. Bürstmayr (Austria)
  • J. Johnson (USA)
  • Z. Kertész (Hungary)
  • G. Kimber (USA)
  • J. Matuz (Hungary)

Cereal Research Communications
Cereal Research Non-Profit Ltd. Company
Address: P.O. Box 391, H-6701 Szeged, Hungary
Phone: +36 62 435 235
Fax: +36 62 420 101
E-mail: crc@gk-szeged.hu

Indexing and Abstracting Services:

  • AgBiotechNet Abstracts
  • Agricola
  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Current Contents/Agriculture
  • Biology & Environmental Sciences
  • ISI Web of Science/li>
  • Science Citation Index Expanded
  • SCOPUS

 

Cereal Research Communications
Language English
Size B5
Year of
Foundation
1973
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3720 (Print)
ISSN 1788-9170 (Online)