View More View Less
  • 1 ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India
  • | 2 DCRUST, Murthal, Sonepat, Haryana, India
Restricted access

In the present investigation, expression of genes related to Na+ exclusion such as salt overly sensitive (TaSOS1) and Na+/H+ antiporter (TaNHX1) and proline accumulation such as pyrroline-5-carboxylate reductase (P5CR) and glutamate synthase (GOGAT) was studied in seedlings of Kharchia 65 (Kh 65, salt tolerant) and HD 2009 (sensitive) under salt stress (ECe, 12 dSm–1) and controlled conditions. As compared to HD 2009, Kh 65 showed significantly lower accumulation of Na+ (p < 0.01) and higher accumulation of proline (p < 0.05) in leaf blade under salt stress. The relative expression of TaSOS1 increased significantly (p < 0.001) in roots of Kh 65 (4.31-fold) while it decreased in HD 2009. There was significantly higher (p < 0.01) relative expression of TaNHX1 (27.57-fold) in leaf and 3.07-fold in roots of Kh 65 as compared to 3.65- and 0.87-fold increase in leaf and roots of HD 2009, respectively, under salt stress. There was significantly (p < 0.05) higher accumulation of proline as compared to HD 2009 in leaf tissues. There was significantly higher (p < 0.01) expression of P5CR (5.23-fold in leaf and 8.77-fold in the root) and glutamate synthase (6.0- fold in roots) in Kh 65 as compared to HD 2009. The study demonstrated that upregulation of genes for Na+ exclusion in root and compartmentation in leaf and increased proline concentration are associated with tolerance to salinity stress in wheat. The information will be useful for improving wheat genotypes for salt tolerance.

  • Apse, M.P., Blumwald, E. 2002. Engineering salt tolerance in plants. Curr. Opinion. Biotechnol. 13:146150.

  • Ashraf, M., Foolad, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59:206216.

    • Search Google Scholar
    • Export Citation
  • Benderradji, L., Brini, F., Amar, S.B., Kellou, K., Azaza, J., Masmoudi, K., Bouzerzour, H., Hanin, M. 2011. Sodium transport in the seedlings of two bread wheat (Triticum aestivum L.) genotypes showing contrasting salt stress tolerance. Aust. J. Crop Sci. 5:233241.

    • Search Google Scholar
    • Export Citation
  • Brini, F., Gaxiola, R.A., Berkowitz, G.A., Masmoudi, K. 2005. Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiol. Biochem. 43:347354.

    • Search Google Scholar
    • Export Citation
  • Colmer, T.D., Flowers, T.J., Munns, R. 2006. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57:10591078.

  • Cross, J.M., Korff, V.M., Altmann, T., Bartzetko, L., Supice, R., Gibon, Y., Palacios, N., Stitt, M. 2006. Variation of enzyme activities and metabolite levels in 24 Arabidobsis accessions growing in carbon limited conditions. Plant Physiol. 142:15741588.

    • Search Google Scholar
    • Export Citation
  • Cuin, T.A., Bose, J., Stefano, G., Jha, D., Tester, M., Mancuso, S., Shabala, S. 2011. Assessing the role of plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ. 34:947961.

    • Search Google Scholar
    • Export Citation
  • Díaz De León, J.L., Escoppinichi, R., Zavala-Fonseca, R., Castellanos, T., Röder, M.S., Mujeeb-Kazi, A. 2010. Phenotypic and genotypic characterization of salt-tolerant wheat genotypes. Cereal Res. Commun. 38:1522.

    • Search Google Scholar
    • Export Citation
  • Dubcovsky, J., Maria, G.S., Epstein, E., Luo, M.C., Dvorák, J. 1996. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor. Appl. Genet. 2:448454.

    • Search Google Scholar
    • Export Citation
  • FAO. 2008. FAO land and plant nutrition management service. http://www.fao.org/ag/agI/agII/spush.

  • Gaxiola, R., Rao, R., Sherman, A., Grifasi, P., Alpier, S., Fink, G. 1999. The Arabidopsis thalianna proton transporters, Nhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl Acad. Sci. USA 96:14801485.

    • Search Google Scholar
    • Export Citation
  • Genc, Y., Oldach, K., Gogel, B., Wallwork, H., Glenn, K., McDonald, G.K., Smith, A.B. 2013. Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels. Mol. Breed. 32:3959.

    • Search Google Scholar
    • Export Citation
  • Gouiaa, S., Khoudi, H., Leidi, E.O., Pardo, J.M., Masmoudi, K. 2012. Expression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol. Biol. 79:137155.

    • Search Google Scholar
    • Export Citation
  • Haouari, C.C., Nasraoui, A., Carrayol, E., Gouia, H. 2013. Response of two wheat genotype to long-term salinity stress in relation to oxidative stress and osmolyte concentration. Cereal Res. Commun. 41:389399.

    • Search Google Scholar
    • Export Citation
  • He, X., Hou, X., Shen, Y., Huang, Z. 2011. TaSRG, a wheat transcription factor, significantly affects salt tolerance in transgenic rice and Arabidopsis. FEBS Letters 585:12311237.

    • Search Google Scholar
    • Export Citation
  • Hollington, P.A. 1998. Technological break-throughs in screening/breeding wheat varieties for salt tolerance. In: Gupta, S.K., Sharma, S.K., Tyagi, N.K. (eds), Proc. National Conf. ‘Salinity Management in Agriculture’. Central Soil Salinity Res. Inst. Karnal India. pp. 273289.

    • Search Google Scholar
    • Export Citation
  • Huang, Z., Zhao, L., Chen, D., Liang, M., Liu, Z., Shao, H. 2013. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS ONE. 8:e62085.

    • Search Google Scholar
    • Export Citation
  • Kovács, Z., Sarkadi, L.S., Sovány, C., Kirscha, K., Galiba, G., Kocsy, G. 2011. Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Sci. 180:6168.

    • Search Google Scholar
    • Export Citation
  • Ma, L., Zhou, E., Gao, L., Mao, X., Zhou, R., Jia, J. 2008. Isolation, expression analysis and chromosomal location of P5CR gene in common wheat (Triticum aestivum L.). S. Afr. J. Bot. 74:705712.

    • Search Google Scholar
    • Export Citation
  • Munns, R., James, R.A., Läuchli, A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57:10251043.

    • Search Google Scholar
    • Export Citation
  • Munns, R., Wallace, P.A., Teakle, N.L., Colmer, T.D. 2010. Measuring soluble ion concentrations (Na+, K+, Cl-) in salt-treated plants. In: Sunkar, R. (ed.), Plant Stress Tolerance, Methods and Protocols. Springer New York, USA. pp. 371382.

    • Search Google Scholar
    • Export Citation
  • Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45.

  • Rana, V., Ram, S., Nehra, K., Sharma, I. 2015. Differential expression analysis of salt stress related genes TaSRG and TaRUB1 in wheat genotypes. J. Wheat Res. 7:7173.

    • Search Google Scholar
    • Export Citation
  • Roy, S.J., Nagrao, S., Tester, M. 2014. Salt resistant crop plants. Current Opinion in Biotech. 26:115124.

  • Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Plant. 49:8591.

    • Search Google Scholar
    • Export Citation
  • Saqib, M., Zörb, C., Rengel, Z., Schubert, S. 2005. The expression of the endogenous vacuolar Na+ /H+ antiporters in roots and shoots correlates positively with the salt resistance of wheat (Triticum aestivum L.). Plant Sci. 169:959965.

    • Search Google Scholar
    • Export Citation
  • Singh, A., Bhushan B., Gaikwad, K., Yadav, O.P., Kumar, S., Rai, R.D. 2015. Induced defence response of contrasting bread wheat genotypes under differential salt stress imposition. Indian J. Biochem. and Biophys. 52:7585.

    • Search Google Scholar
    • Export Citation
  • Szabados, L., Savouré, A. 2009. Proline: A multi-functional amino acid. Cell 15:13601385.

  • Tester, M., Davenport, R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91:503527.

  • Xu, Y., Zhou, Y., Hong, S., Xia, Z., Cui, D., Guo, J., Xu, H., Jiang, X.X. 2013. Functional characterization of a wheat NHX antiporter gene TaNHX2 that encodes a K+/H+ exchanger. PLoS ONE 8:e78098.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., Hamamoto, S., Uozumi, N. 2013. Sodium transport system in plant cells. Front. Plant Sci. 4:17.

  • Zhang, Y., Feng, D., Bao, Y., Ma, X., Yin, N., Xu, J., Wang, H. 2012. A novel wheat related-to-ubiquitin gene TaRUB1 is responsive to pathogen attack as well as to both osmotic and salt stress. Plant Mol. Biol. Reporter 31:151159.

    • Search Google Scholar
    • Export Citation
  • rb, C., Noll, A., Karl, S., Leib, K., Yan, F., Schubert, S. 2005. Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. J. Plant Physiol. 162:5566.

    • Search Google Scholar
    • Export Citation