View More View Less
  • 1 1991 Upper Buford Circle, 411 Borlaug Hall, St. Paul, MN, 55108, USA
  • | 2 Dep. of Agronomy, 915 W. State St., West Lafayette, IN 47907, USA
  • | 3 Dep. of Botany and Plant Pathology, 915 W. State St., West Lafayette, IN 47907, USA
  • | 4 USDA-ARS Cereal Disease Laboratory, St. Paul, MN, USA
Restricted access

Stem rust caused by Puccinia graminis f. sp tritici of wheat (Triticum aestivum L.) is one of the most destructive cereal diseases globally. Concern about the disease has increased since 1999 with the discovery in Uganda of a new virulent race of Pgt, designated as race TTKSK (also known as Ug99). The objectives of this experiment were to characterize the resistance and to determine the chromosomal location of the stem rust resistance in the spring wheat line PI 410966. A mapping population was developed from a cross between PI 410966 and a susceptible wheat line OK3040. An inoculation test with isolate 04KEN156/04 of race TTKSK was conducted at the USDA-ARS Cereal Disease Laboratory in the F6:7 generation, and the F6:7 phenotypic data were used to genetically map the resistance gene to the centromeric region on chromosome 2BS. The single locus explained the observed F6:7 resistant and susceptible scores. The location of the gene and molecular marker banding profiles of the diagnostic markers suggest that the stem rust resistance gene in PI 410966 could be a new gene, an allele of Sr36, or Sr36.

  • Allard, R.W., Shands, R.G. 1954. Inheritance of resistance to stem rust and powdery mildew in cytologically stable spring wheats derived from Triticum timopheevi. Phytopathol. 44:266274.

    • Search Google Scholar
    • Export Citation
  • Anderson, J.A. 2003. Plant genomics and its impact on wheat breeding. In: Newbury, H.J. (ed.), Plant Molecular Breeding. Blackwell Publ. Boca Raton, FL, USA. pp. 184215.

    • Search Google Scholar
    • Export Citation
  • Bariana, H.S., Hayden, M.J., Ahmed, N.U., Bell, J.A., Sharp, P.J., McIntosh, R.A. 2001. Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust. J. Agric. Res. 52:12471255.

    • Search Google Scholar
    • Export Citation
  • Dyck, P.L. 1992. Transfer of a gene for stem rust resistance from Tricitum araraticum to hexaploid wheat. Genome 35:788792.

  • Gupta, P., Balyan, H., Edwards, K., Isaac, P., Korzun, V., Röder, M., Gautier, M-F., Joudrier, P., Schlatter, A., Dubcovsky, J., De la Pena, R., Khairallah, M., Penner, G., Hayden, M., Sharp, P., Keller, B., Wang, R., Hardouin, J., Jack, P., Leroy, P. 2002. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor. Appl. Genet. 105:413422.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., Singh, R.P. 2006. Resistance in U.S. wheat to recent eastern African isolates of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31. Plant Dis. 90:476480.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., Singh, R.P., Ward, R.W., Wanyera, R., Kinyua, M., Njau, P., Fetch, T., Pretorius, Z.A., Yahyaoui, A. 2007. Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 91:10961099.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., Szabo, L.J., Pretorius, Z.A., Singh, R.P., Ward, R., Fetch, T., 2008. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 92:923926.

    • Search Google Scholar
    • Export Citation
  • Korbie, D.J., Mattick, J.S. 2008. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc. 3:14521456.

    • Search Google Scholar
    • Export Citation
  • Kosambi, D.D. 1944. The estimation of map distances from recombination values. Ann. Eugen. 12:172175.

  • Kuchel, H., Fox, R., Reinheimer, J., Mosionek, L., Willey, N., Bariana, H., Jefferies, S. 2007. The successful application of a marker-assisted wheat breeding strategy. Mol. Breed. 20:295308.

    • Search Google Scholar
    • Export Citation
  • Leonard, K.J. 2001. Stem rust-future enemy? In: Peterson, P.D. (ed.), Stem Rust of Wheat: From Ancient Enemy to Modern Foe. APS Press. St. Paul, MN, USA. pp. 119146.

    • Search Google Scholar
    • Export Citation
  • Leonard, K.J., Szabo, L.J. 2005. Stem rust of small grains and grasses caused by Puccinia graminis. Mol. Plant Pathol. 6:99111.

  • McFadden, E.S. 1930. A successful transfer of emmer characters to vulgare wheat. J. Am. Soc. Agron. 22:10201034.

  • McIntosh, R.A. 1988. The role of specific genes in breeding for durable stem rust resistance in wheat and triticale. In: Simmonds, N.W., Rajaram, S. (eds), Breeding Strategies for Resistance to the Rust of Wheat. CIMMYT. El Batan, Mexico. pp. 19.

    • Search Google Scholar
    • Export Citation
  • Michelmore, R.W., Paran, I., Kesseli, R.V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl Acad. Sci. USA 88:98289832.

    • Search Google Scholar
    • Export Citation
  • Nyquist, N.E. 1962. Differential fertilization in the inheritance of stem rust resistance in hybrids involving a common wheat strain derived from Triticum timopheevii. Genetics 47:11091124.

    • Search Google Scholar
    • Export Citation
  • Pallotta, M.A., Warner, P., Fox, R.L., Kuchel, H., Jefferies, S.J., Langridge, P. 2003. Marker assisted wheat breeding in the southern region of Australia. Proc. Tenth Int. Wheat Genet. Symp. Paestum, Italy. pp. 789791.

    • Search Google Scholar
    • Export Citation
  • Pederson, W.L., Leath, S. 1988. Pyramiding major genes for resistance to maintain residual effects. Annu. Rev. Phytopathol. 26:369378.

    • Search Google Scholar
    • Export Citation
  • Pestsova, E., Ganal, M.W., Röder, M.S. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689697.

    • Search Google Scholar
    • Export Citation
  • Pretorius, Z.A., Singh, R.P., Wagoire, W.W., Payne, T.S. 2000. Detection of virulence to wheat stem resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 84:203.

    • Search Google Scholar
    • Export Citation
  • Rees, R.G. 1972. Uredospore movement and observations on the epidemiology of wheat rusts in north-eastern Australia. Agric. Res. 23:215223.

    • Search Google Scholar
    • Export Citation
  • Reynolds, M.P., Borlaug, N.E. 2006. Applying innovations and new technologies from international collaborative wheat improvement. J. Agric. Sci. 144:95110.

    • Search Google Scholar
    • Export Citation
  • der, M.S., Korzun, V., Wandehake, K., Planschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:20072023.

    • Search Google Scholar
    • Export Citation
  • Roelfs, A.P. 1977. Foliar fungal diseases of wheat in the People’s Republic of China. Plant Dis. Rep. 61:836841.

  • Roelfs, A.P., Martens, J.W. 1988. An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopath. 78:526533.

    • Search Google Scholar
    • Export Citation
  • Singh, R.P., Hodson, D.P., Huerta-Espino, J., Jin, Y., Bhavani, S., Njau, P., Herrera-Foessel, S.A., Singh, P., Singh, S., Govindan, V. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Ann. Rev. Phytopath. 49:465481.

    • Search Google Scholar
    • Export Citation
  • Somers, D.J., Isaac, P., Edwards, K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109:11051114.

    • Search Google Scholar
    • Export Citation
  • Song, Q.J., Shi, J.R., Singh, S., Fickus, E.W., Costa, J.M., Lewis, J., Gill, B.S., Ward, R., Cregan, P.B. 2005. Development and mapping of microsatellite (SSR) markers in wheat. Theor. Appl. Genet. 110:550560.

    • Search Google Scholar
    • Export Citation
  • Stakman, E.C., Steward, D.M., Loegering, W.Q. 1962. Identification of physiologic races of Puccinia graminis var. tritici. U.S. Dep. Agric. Agric. Res. Serv. E-617.

    • Search Google Scholar
    • Export Citation
  • Tsilo, T.J., Jin, Y., Anderson, J.A. 2008. Diagnostic microsatellite markers for the detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of wheat. Crop Sci. 48:253261.

    • Search Google Scholar
    • Export Citation
  • Van Ooijen, J.W. 2012. JoinMap® 4.1, Software for the calculation of genetic linkages maps in experimental populations of diploid species. Kyazma B.V. Wageningen, The Netherlands.

    • Search Google Scholar
    • Export Citation
  • Varshney, R.K., Hoisington, D.A., Nayak, S.N., Graner, A. 2009. Molecular plant breeding: methodology and achievements. In: Somers, D.J. et al. (eds), Plant Genomics Methods and Protocols. Humana Press New York, NY. USA. pp. 283304.

    • Search Google Scholar
    • Export Citation
  • Wanyera, R., Kinyua, M.G., Jin, Y., Singh, R.P. 2006. The spread of stem rust caused by Puccinia graminis f. sp. tritici, with virulence on Sr31 in wheat in Eastern Africa. Plant Dis. 90:113.

    • Search Google Scholar
    • Export Citation
  • Wu, S. 2008. Molecular mapping of stem rust resistance genes in wheat. M.S. diss. Kansas State Univ., Manhattan, Kansas. Available at http://krex.k-state.edu/ dspace/bitstream/2097/905/1/ShuangyeWu2008.pdf. Verified May 30 2011.

    • Search Google Scholar
    • Export Citation
  • Wu, S., Pumphrey, M., Bai, G. 2009. Molecular mapping of stem rust-resistance gene Sr40 in wheat. Crop Sci. 49:16821686.

  • Zadoks, J.C. 1963. Epidemiology of wheat rust in Europe. FAO Plant Prot. Bull. 13:97108.