View More View Less
  • 1 University of Extremadura. Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
  • 2 Instituto Nacional de Investigação Agrária e Veterinária, Elvas, Portugal
  • 3 Sabanci University, Istanbul, Turkey
Restricted access

The combined application of nitrogen (N) and zinc (Zn) appears to be a promising agronomic strategy for the biofortification with Zn. To evaluate such efficiency, a field experiment was conducted in south-eastern Portugal under Zn-deficient soil. Four advanced breeding lines and two commercial varieties of bread wheat (Triticum aestivum L.) were fertilized with five treatments: i) control, ii) two foliar Zn applications, iii) one foliar Zn+N application, iv) soil and two foliar Zn applications, and v) soil and one foliar Zn+N application. Grain Zn content varied greatly across treatments and INIAV-1 and the commercial varieties were the most interesting cultivars in all the treatments. Grain Zn concentrations higher than the target level of 38 mg Zn kg−1 were obtained only when two foliar Zn applications were applied, alone or in combination with soil Zn applications, and grain Zn bioavailability also was more adequate (phytate:Zn ratios similar to 15). Soil Zn application resulted in grain yield increases between 7–10%, which virtually offset the extra application cost. The combined soil and two foliar treatment could be a good option for biofortifying bread wheat under Zn-deficient soils.

  • Aciksoz, S.B., Yazici, A., Ozturk, L., Cakmak, I. 2011. Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil 349:215225.

    • Search Google Scholar
    • Export Citation
  • Alloway, B.J. 2009. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 31:537548.

  • Bouis, H.E., Welch, R.M. 2010. Biofortification –a sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Sci. 50:2032.

    • Search Google Scholar
    • Export Citation
  • Cakmak, I., Torum, A., Millet, E., Feldman, M., Fahima, T., Korol, A., Nevo, E., Braun, H.J., Ozkan, H. 2004. Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. Plant Nutr. 50:10471054.

    • Search Google Scholar
    • Export Citation
  • Cakmak, I., Kalayci, M., Kaya, Y., Torun, A.A., Aydin, N., Wang, Y., Arisoy, Z., Erdem, H., Yazici, A., Gokmen, O., Ozturk, L., Horst, W.J. 2010. Biofortification and localization of zinc in wheat grain. J. Agric. Food Chem. 58:90929102.

    • Search Google Scholar
    • Export Citation
  • Elmadfa, I. 2009. The European Nutrition and Health Report. Forum of Nutrition, Vol. 62. Vienna Austria. 412 p.

  • Erenoglu, E.B., Kutman, U.B., Ceylan, Y., Yildiz, B., Cakmak, I. 2011. Improved nitrogen nutrition enhances root uptake, root to shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol. 189:438448.

    • Search Google Scholar
    • Export Citation
  • Galinha, C., Freitas, M.C., Pacheco, A. 2013. Elemental characterization of bread and durum wheat by instrumental neutro activation analysis. J. Radioanal. Nuclear Chem. 297:221226.

    • Search Google Scholar
    • Export Citation
  • Gargari, B.P., Mahboob, S., Razavieh, S.V. 2007. Content of phytic acid and its mole ratio to zinc in flour and breads consumed in Tabriz, Iran. Food Chem. 100:11151119.

    • Search Google Scholar
    • Export Citation
  • Ghasemi, S., Khoshgoftarmanesh, A.H., Afyuni, M., Hadadzadeh, H. 2013. The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. Eur. J. Agron. 45:6874.

    • Search Google Scholar
    • Export Citation
  • Gomez-Coronado, F., Poblaciones, M.J., Almeida, A.S., Cakmak, I. 2016. Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant Soil 401:331346.

    • Search Google Scholar
    • Export Citation
  • Graham, R.D., Welch, R.M., Saunders, D.A., Ortiz-Monasterio, I., Bouis, H.E., Bonierbale, M., de Haan, S., Burgos, G., Thiele, G., Liria Dominguez, M.R., Meisner, C.A., Beebe, S.E., Potts, M.J., Kadian, M., Hobbs, P.R., Gupta, R.K., Twomlow, S.J. 2007. Nutritious subsistence food systems. Adv. Agron. 92:174.

    • Search Google Scholar
    • Export Citation
  • Guo, J.X., Liao, W.Q., Ling, N., Hu, X., Sui, B., Shang, Q., Guo, S. 2013. Effects of combination use of N and Zn fertilizers on the yield and N, Zn concentrations in wheat. J. Nanjing Agric. University 36:7782.

    • Search Google Scholar
    • Export Citation
  • Guo, J.X., Feng, X.M., Hu, X.Y., Tian, G.L., Ling, N., Wang, J.H., Shen, Q.R., Guo, S.W. 2016. Effects of soil zinc availability, nitrogen fertilizer rate and zinc fertilizer application method on zinc biofortification of rice. J. Agric. Sci. 154:584597.

    • Search Google Scholar
    • Export Citation
  • Haug, W., Lantzsch, H.J. 1983. Sensitive method for the rapid determination of phytate in cereals and cereal products. Sci. Food Agric. 34:14231426.

    • Search Google Scholar
    • Export Citation
  • Hotz, C., Brown, K.H. 2004. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 25:S91S204

    • Search Google Scholar
    • Export Citation
  • Joy, E.J.M., Stein, A.J., Young, S.D., Ander, E.L., Watts, M.J., Broadley, M.R. 2015. Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant Soil 389:124.

    • Search Google Scholar
    • Export Citation
  • Karim, M.R., Zhang, Y.Q., Zhao, R.R., Chen, X.P., Zhang, F.S., Zou, C.Q. 2012. Alleviation of drought stress in winter wheat by late foliar application of zinc, boron and manganese. J. Plant Nutr. Soil Sci. 175:142151.

    • Search Google Scholar
    • Export Citation
  • Kutman, U.B., Yildiz, B., Cakmak, I. 2011. Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron through the development of durum wheat. Plant Soil 342:149164.

    • Search Google Scholar
    • Export Citation
  • Kutman, U.B., Kutman, B.Y., Ceylan, Y., Ova, E.A., Cakmak, I. 2012. Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant Soil 361:177187.

    • Search Google Scholar
    • Export Citation
  • Levenson, C.W., Morris, D. 2011. Zinc and neurogenesis: making new neurons from development to adulthood. Adv. Nutr. 2:96100.

  • Lindsay, W.L., Norvell, W.A. 1978. Development of a DPTA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. of Am. J. 42:421428.

    • Search Google Scholar
    • Export Citation
  • Mensink, G.B., Fletcher, R., Gurinovic, M., Serra-Majem, L., Szponar, L., Tetens, I., Verkaik-Kloosterman, J., Baka, A., Stephen, A.M. 2013. Mapping low intake of micronutrients across Europe. British J. Nutr. 110:755773.

    • Search Google Scholar
    • Export Citation
  • Pfeiffer, W.H., McClafferty, B. 2007. Biofortification: Breeding micronutrient-dense crops. In: Kang, M.S., Priyadarshan, P.M. (eds). Breeding Major Food Staples. Blackwell Publishing. Oxford, UK. pp. 6191.

    • Search Google Scholar
    • Export Citation
  • Sanchez, C., Lopez-Jurado, M., Planells, E., Llopis, J., Aranda, P. 2009. Assessments of iron and zinc intake and related biochemical parameters in an adult Mediterranean population from southern Spain: influence of lifestyle factors. J. Nutr. Biochem. 20:125131.

    • Search Google Scholar
    • Export Citation
  • Sims, J.T., Johnson, G.V. 1991. Micronutrient soil test. In: Mordvedt, J.J., Cox, F.R., Shuman, L.M., Welch, M.R. (eds), Micronutrients in Agriculture. 2nd ed. The Soil Science Society of America Book Series nº 4. Soil Sci. Soc. of Am. Madison, WI. USA, pp. 427476.

    • Search Google Scholar
    • Export Citation
  • Terrés, C., Navarro, M., Martin-Lagos, F., Gimenez, R., Lopez, H., Lopez, M.C. 2001. Zinc levels in foods from southeastern Spain: relationship to daily dietary intake. Food Addit. Contam. 18:687695.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Mao, H., Zhao, H., Huang, D., Wang, Z. 2012. Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau, China. Field Crops Res. 135:8996.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., Liu, Q., Pan, F., Yuan, L., Yin, X. 2015. Effects of increasing rates in zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheat. Field Crops Res. 184:5864.

    • Search Google Scholar
    • Export Citation
  • Welch, R.M., Graham, R.D. 2002. Breeding crops for enhanced micronutrient content. Plant Soil 245:205214.

  • World Health Organization, WHO. 2009. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. World Health Organization. Geneva, Switzerland. pp. 170.

  • Xue, Y.F., Yue, S.C., Zhang, Y.Q., Cui, Z.L., Chen, X.P., Yang, F.C., Cakmak, I., McGrath, S.P., Zhang, F.S., Zou, C.Q. 2012. Grain and shoot zinc accumulation in winter wheat affected by nitrogen management. Plant Soil 361:153163.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.Q., Sun, Y.X., Ye, Y.L., Karim, M.R., Xue, Y.F., Yan, P. et al. 2012. Zinc biofortification of wheat through fertilizers applications in different locations of China. Field Crops Res. 125:17.

    • Search Google Scholar
    • Export Citation
  • Zhao, F.J., Su, Y.H., Dunham, S.J., Rakszegi, M., Bedo, Z., McGrath, S.P., Shewry, P.R. 2009. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. of Cereal Sci. 49:290295.

    • Search Google Scholar
    • Export Citation
  • Zou, C.Q., Zhang, Y.Q., Rashid, A., Ram, H., Savasli, E., Arisoy, R.Z. et al. 2012. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 361:119130.

    • Search Google Scholar
    • Export Citation