View More View Less
  • 1 BZU, Bahadur Sub-Campus Layyah, Pakistan
  • | 2 Memorial University of Newfoundland, Corner Brook, NL, Canada
  • | 3 University of Agriculture, Faisalabad, Pakistan
  • | 4 BZU, Multan, Pakistan
Restricted access

Late planting of wheat in rice-wheat cropping system is perhaps one of the major factors responsible for low crop yield. The main cause of reduction in yield is due to supra-optimal conditions during the reproductive growth. High temperature during reproductive phase induces changes in water relations, decreases photosynthetic rate, and transpiration rate, stomatal conductance and antioxidative defence system. Silicon (Si), being a beneficial nutrient not only provides significant benefits to plants growth and development but may also mitigate the adversities of high temperature. A field study was conducted at Agronomic Research Area of University of Agriculture; Faisalabad, Pakistan to assess the performance of late sown wheat with the soil applied Si. Experiment was comprised of three sowing dates; 10th Nov (normal), 10th Dec (late), 10th Jan (very late) with two wheat varieties (Sehar-2006 and Faisalabad-2008), and an optimized dose of Si (100 mg per kg soil), applied at different growth stages (control, crown root, booting and heading). Results indicated that 100 mg Si per kg soil at heading stage offset the negative impact of high temperature and induced heat tolerance in late sown wheat. Silicon application improved 34% relative water contents (RWC), 30% water potential, 26% osmotic potential, 23% turgor potential and 21% photosynthetic rate, and 32% transpiration rate and 20% stomatal conductance in wheat flag leaf than control treatment. Further it was observed that Si application preventing the oxidative membrane damage due to enhanced activity of antioxidant enzymes, i.e. 35% superoxide dismutase (SOD) and 38% catalase (CAT). In conclusion results of this field study demonstrated that soil applied Si (100 mg per kg soil) at heading stage enhanced all physiological attributes of wheat flag leaf. Which in turn ameliorated the adverse effects of high temperature in late sown wheat. Study depicted that Si can be used as a potential nutrient in order to mitigate the losses induced by high temperature stress.

  • Agarie, S., Uchida, H., Agata, W., Kubota, F., Kaufman, P.B. 1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Prod. Sci. 1:8995.

    • Search Google Scholar
    • Export Citation
  • Al-aghabary, K., Zhu, Z., Qinhua, S. 2004. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Nutr. 27:21012115.

    • Search Google Scholar
    • Export Citation
  • Almeselmani, M., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R., Singh, T.P. 2006. Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 171:382388.

    • Search Google Scholar
    • Export Citation
  • Almeselmani, M., Deshmukh, P.S. 2012. Effect of high temperature stress on physiological and yield parameters of some wheat genotypes recommended for irrigated and rainfed condition. Jordan J. Agric. Sci. 8:6677.

    • Search Google Scholar
    • Export Citation
  • Anon, S., Fernandez, J.A., Franco, J.A., Torrecillas, A., Alarcón, J.J., Sánchez-Blanco, M.J. 2004. Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Hort. Sci. 101:333342.

    • Search Google Scholar
    • Export Citation
  • Badawi, M., Reddy, Y.V., Agharbaoui, Z., Tominaga, Y., Danyluk, J., Sarhan, F., Houde, M. 2007. Structure and functional analysis of wheat ICE (Inducer of CBF Expression) genes. Plant Cell Physiol. 48:12371249.

    • Search Google Scholar
    • Export Citation
  • Barrs, H.D., Weatherley, P.E. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15:413428.

    • Search Google Scholar
    • Export Citation
  • Berry, J.A., Raison, J.K. 1981. Responses of macrophytes to temperature. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds), Encyclopedia of Plant Physiology, Physiological Plant Ecology, New Series, Vol 12A. Springer. New York, USA. pp. 277338.

    • Search Google Scholar
    • Export Citation
  • Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann. Biochem. 72:248254.

    • Search Google Scholar
    • Export Citation
  • Chance, M., Maehly, A.C. 1955. Assay of catalases and peroxidases. Methods Enzymol. 2:764.

  • Epstein, E. 1999. Silicon. Ann. Rev. Plant Physiol. 50:641664.

  • Giannopolitis, C.N., Ries, S.K. 1977. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59:309314.

  • Gong, H.J., Chen, K.M., Chen, G.C., Wang, S.M., Zhang, C.L. 2003. Effect of silicon on growth of wheat under drought. J. Plant Nutr. 26:10551063.

    • Search Google Scholar
    • Export Citation
  • Gong, H., Zhu, X., Chen, K., Wang, S., Zhang, C. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 169:313321.

    • Search Google Scholar
    • Export Citation
  • Gong, H.J., Chen, K.M., Zhao, Z.G., Chen, G.C., Zhou, W.J. 2008. Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol. Plantarum 52:592596.

    • Search Google Scholar
    • Export Citation
  • Guttieri, M.J., Stark, J.C., Obrien, K., Souza, E. 2001. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci. 41:327335.

    • Search Google Scholar
    • Export Citation
  • Halliwell, B., Gutteridge, J.M.C. 1999. Free Radicals in Biology and Medicine. Clarendon Press, Oxford University Press. Oxford, New York.

    • Search Google Scholar
    • Export Citation
  • Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxova, M., Lux, A. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant 123:459466.

    • Search Google Scholar
    • Export Citation
  • Hong, S.S., Hong, T., Jiang, H., Xu, D.Q. 1999. Changes in the non-photochemical quenching of chlorophyll fluorescence during aging of wheat flag leaves. Photosynthetica 36:621625.

    • Search Google Scholar
    • Export Citation
  • Hussain, M., Shabir, G., Farooq, M., Jabran, K., Farooq, S. 2012b. Developmental and phenological responses of wheat to sowing dates. Pak. J. Agri. Sci. 49:459468.

    • Search Google Scholar
    • Export Citation
  • Hussain, M., Farooq, M., Shabir, G., Khan, M.B., Zia, A.B., Lee, D.D. 2012a. Delaying planting decreases wheat productivity. Int. J. Agric. Biol. 14:533539.

    • Search Google Scholar
    • Export Citation
  • Iqbal, M., Khan, M.A., Anwar, M.Z. 2002. Zero-tillage technology and farm profits: a case study of wheat growers in the rice zone of Punjab. Pak. Dev. Rev. 41:665682.

    • Search Google Scholar
    • Export Citation
  • Kochhar, S., Kochhar, V.K. 2005. Expression of antioxidant enzymes and heat shock protein in relations to combine stress of cadmium and heat in Vigna mungo seedlings. Plant Sci. 168:921929.

    • Search Google Scholar
    • Export Citation
  • Khoshravesh, M., Sefidkouhi, G.M.A., Valipour, M. 2015. Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments. Appl. Water Sci. 5:122132.

    • Search Google Scholar
    • Export Citation
  • Li, Q.F., Ma, C.C., Shang, Q.L. 2007. Effects of silicon on photosynthesis and antioxidative enzymes of maize under drought stress. Chinese J. Appl. Ecol. 18:531536.

    • Search Google Scholar
    • Export Citation
  • Liang, Y., Chen, Q., Zhang, W., Ding, R. 2003. Exogenous silicon increases antioxidant enzyme activity and reduces lipid peroxidation in root of salt-stressed barley (Hordeum vulgare L.). Plant Physiol. 160:11571167.

    • Search Google Scholar
    • Export Citation
  • Liang, Y., Zhang, W., Chen, Q., Liu, Y., Ding, R. 2006. Effect of exogenous silicon (Si) on H-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ. Exp. Bot. 57:212219.

    • Search Google Scholar
    • Export Citation
  • Liang, Y., Sun, W., Zhu, Y.G., Christie, P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut. 147:422428.

    • Search Google Scholar
    • Export Citation
  • Liang, Y.C., Shen, Q.R., Shen, Z.C., Ma, T.S. 1996. Effects of silicon on salinity tolerance in barley cultivars. J. Plant Nutr. 19:173183.

    • Search Google Scholar
    • Export Citation
  • Liang, Y.C. 1998. Effects of Si on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere 34:289296.

    • Search Google Scholar
    • Export Citation
  • Liang, Y.C., Zhu, J., Li, Z.J. 2008. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ. Exp. Bot. 64:286294.

    • Search Google Scholar
    • Export Citation
  • Liu, X., Huang, B. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40:503509.

  • Ma, J.F., Yamaji, N. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11:392397.

  • Mazorra, L.M., Nunez, E., Echerarria, M., Coll, F., Sánchez-Blanco, M.J. 2002. Influence of brassinosteriods and antioxidant enzymes activity in tomato under different temperatures. Plant Biol. 45:593596.

    • Search Google Scholar
    • Export Citation
  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490498.

    • Search Google Scholar
    • Export Citation
  • Moussa, H.R. 2006. Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int. J. Agric. Biol. 2:293297.

    • Search Google Scholar
    • Export Citation
  • Panchuk, Volkov, R.A., Schoffl, F., 2002. Heat stress and heat shock transcript factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 129:838853.

    • Search Google Scholar
    • Export Citation
  • Pell, E.J., Dann, M.S. 1991. Multiple stress and plant senescence. In: Mooney, H.A., Winner W.E., Pell, E.J. (eds), Integrated Response of Plants to Stress. Academic Press. San Diego, CA, USA. pp. 189204.

    • Search Google Scholar
    • Export Citation
  • Pourreza, J., Soltani, A., Naderi, A., Aynehband, A. 2009. Modelling leaf production and senescence in wheat. American-Eurasian J. Agric. Environ. Sci. 6:498507.

    • Search Google Scholar
    • Export Citation
  • Qian, Q.Q., Zai, W.S., Zhu, Z.J., Yu, J.Q. 2006. Effects of exogenous silicon on active oxygen scavenging systems in chloroplasts of cucumber (Cucumis sativus L.) seedlings under salt stress. J. Plant Physiol. Mol. Biol. 32:107112.

    • Search Google Scholar
    • Export Citation
  • Rahman, M.A., Chikushi, J., Yoshida, S., Yahata, H., Yasunsga, B. 2005. Effect of high air temperature on grain growth and yields of wheat genotypes differing in heat tolerance. J. Agric. Meteorol. 60:605608.

    • Search Google Scholar
    • Export Citation
  • Ristic, Z., Bukovnik, U., Momcilovic, Fu, I.J., Prasad, P.V. 2008. Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. J. Plant Physiol. 165:192202.

    • Search Google Scholar
    • Export Citation
  • Romero-Aranda, M.R., Jurado, O., Cuartero, J. 2006. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol. 163:847855.

    • Search Google Scholar
    • Export Citation
  • Sairam, R.K., Tyagi, A. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 86:407421.

  • Simoes-Araujo, J.L., Rumjanek, N.G., Margis-Pinheiro, M. 2003. Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Braz. J. Plant Physiol. 15:3341.

    • Search Google Scholar
    • Export Citation
  • Steel, R.G.D., Torrie, J.H., Dickey, D.A. 1997. Principles and Procedures of Statistics: A Biometric Approach, 3rd Ed. McGraw Hill Book Co. Inc. New York. USA.

    • Search Google Scholar
    • Export Citation
  • Takahashi, C.Y., Nakaseko, K. 1992. Varietals differences in yield response to delayed sowing of spring wheat in Hokkaido. Japanese J. Crop Sci. 61:2227.

    • Search Google Scholar
    • Export Citation
  • Tsukaguchi, T., Kawamitsu, Y., Takeda, H., Suzuki, K., Egawa, Y. 2003. Water status of flower buds and leaves as affected by high temperature in heat tolerant and heat-sensitive cultivars of snap bean (Phaseolus vulgaris L.). Plant Prod. Sci. 6:2427.

    • Search Google Scholar
    • Export Citation
  • Vacca, R.A., De, Pinto, M.C., Valenti, D., Passarella, S., Marra, E., De Gara, L. 2004. Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiol. 134:11001112.

    • Search Google Scholar
    • Export Citation
  • Valentinuz, O.R., Tollenaar, M. 2004. Vertical profile of leaf senescence during the grain-filling period in older and new maize hybrids. Crop Sci. 44:827834.

    • Search Google Scholar
    • Export Citation
  • Valipour, M., Eslamian, S. 2014. Analysis of potential evapotranspiration using 11 modified temperaturebased models. Int. J. Hydro. Sci. Technol. 4:192207.

    • Search Google Scholar
    • Export Citation
  • Valipour, M. 2014. Analysis of potential evapotranspiration using limited weather data. Appl. Water Sci. 4:113120.

  • Valipour, M. 2015a. Calibration of mass transfer-based models to predict reference crop evapotranspiration. Appl. Water Sci. 5:239248.

    • Search Google Scholar
    • Export Citation
  • Valipour, M. 2015b. Temperature analysis of reference evapotranspiration models. Meteorol. Appl. 22:385394.

  • Wahid, A., Close, T.J. 2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant 51:104109.

    • Search Google Scholar
    • Export Citation
  • Wardlaw, I.F., Blumenthal, C., Larroque, O., Wrigley, C.W. 2002. Contrasting effects of chronic heat stress and heat shock on kernel weight and flour quality in wheat. Funct. Plant Biol. 29:2534.

    • Search Google Scholar
    • Export Citation
  • Wong, Y.C., Heits, A., Ville, J.D. 1972. Foliar symptoms of silicon deficiency in the sugarcane plant. Proc. Cong. Int. Soc. Sugarcane Technol. 14:766776.

    • Search Google Scholar
    • Export Citation
  • Xie, X.J., Shen, S.H.H., Li, Y.X., Zhao, X.Y., Li, B.B., Xu, D.F. 2011. Effect of photosynthetic characteristic and dry matter accumulation of rice under high temperature at heading stage. Afr. J. Agric. Res. 6:19311940.

    • Search Google Scholar
    • Export Citation
  • Xu, S., Li, J., Zhang, X., Wei, H., Cui, L. 2006. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultra-structure of chloroplasts in two cool-season turfgrass species under heat stress. Environ. Exp. Bot. 56:274285.

    • Search Google Scholar
    • Export Citation
  • Zekri, M. 1991. Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Sci. Hortic. 47:305315.

  • Zhu, Z., Wei, G., Lia, J., Qiana, Q., Yu, J. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 167:527533.

    • Search Google Scholar
    • Export Citation