View More View Less
  • 1 Universidad Nacional de Córdoba, Córdoba, Argentina
Restricted access

The objective of this work was to determine the change for straw production, carbon and ash content in vegetative tissues through ten cycles of recurrent selection in bread wheat, evaluated under tilled (CT) and non-tilled (NT) soils. Twenty-four wheat genotypes, four for each one of the 0, 2, 4, 6, 8 and 10 cycles of recurrent selection (RS), were used in this study. Experiments were established during two successive seasons. Ash content was expressed on dry mass basis. To estimate the carbon content, we based our calculation on the assumption that organic matter is 50% carbon. Straw dry weight was measured. For each trait, a linear mixed model (regression) was fitted to the experimental data. In response to the number of selection cycles, the ash content percentage increased under CT and decreased under NT. Carbon content decreases under CT, but increases under NT. The sequestered straw carbon and the straw production significantly decrease under CT meanwhile there was no change under NT. The observed increase for straw ash content would be related to the highest rate of transpiration in the more advanced recurrent selection cycles. Consistent with these results, the percentage of straw carbon content decreased because of the mobilization of reserves from the stems and leaves to the grains.

  • American Association of Cereal Chemists 1995. Approved Methods of the AACC, 9th Edition. AACC Method 08-01. AACC, St Paul, MN, USA.

  • Araus, J.L., Amaro, T., Casadesús, J., Asbati, A., Nachit, M.M. 1998. Relationships between ash content, carbon isotope discrimination and yield in durum wheat. Functional Plant Biol. 25:835842.

    • Search Google Scholar
    • Export Citation
  • Araus, J.L., Casadesus, J., Bort, J. 2001. Recent tools for the screening of physiological traits determining yield. In: Reynolds, M.P., Ortiz-Monasterio J.I., McNab A. (eds) Application of Physiology in Wheat Breeding, CIMMYT, Mexico. pp. 5977.

    • Search Google Scholar
    • Export Citation
  • Baumhardt, R.L., Jones, O.R. 2002. Residue management and tillage effects on soil-water storage and grain yield of dryland wheat and sorghum for a clay loam in Texas. Soil and Tillage Res. 68:7182.

    • Search Google Scholar
    • Export Citation
  • Blum, A. 1998. Improving wheat grain filling under stress by stem reserve mobilization. Euphytica 100:7783.

  • Cabrera-Bosquet, L., Sánchez, C., Araus, J.L. 2009. How yield relates to ash content, Δ13C and Δ18O in maize grown under different water regimes. Ann. of Bot. 104:12071216.

    • Search Google Scholar
    • Export Citation
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W. InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar

    • Search Google Scholar
    • Export Citation
  • Fabrizzi, K.P., García, F.O., Costa, J.L., Picone, L.I. 2005. Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil and Tillage Res. 81:5769.

    • Search Google Scholar
    • Export Citation
  • Fuentes, J.P., Flury, M., Huggins, D.R., Bezdicek, D.F. 2003. Soil, water and nitrogen dynamics in dryland cropping systems of Washington State, USA. Soil and Tillage Res. 71:3347.

    • Search Google Scholar
    • Export Citation
  • Gajri, P.R., Arora, V.K., Prihar, S.S. 1992. Tillage management for efficient water and nitrogen use in wheat following rice. Soil and Tillage Res. 24:167182.

    • Search Google Scholar
    • Export Citation
  • López, M.V., Arrúe, J.L. 1997. Growth, yield and water use efficiency of winter barley in response to conservation tillage in a semi-arid region of Spain. Soil and Tillage Res. 44:3554.

    • Search Google Scholar
    • Export Citation
  • López-Bellido, R.J., López-Bellido, L. 2001. Efficiency of nitrogen in wheat under Mediterranean conditions: effect of tillage, crop rotation and N fertilization. Field Crops Res. 71:3146.

    • Search Google Scholar
    • Export Citation
  • Maich, R., Di Rienzo, J.A. 2014. Genotype×tillage interaction in a recurrent selection program in wheat. Cereal Res. Commun. 42:525533.

    • Search Google Scholar
    • Export Citation
  • Masle, J., Farquhar, G.D., Wong, S.C. 1992. Transpiration ratio and plant mineral content are related among genotypes of a range of species. Functional Plant Biol. 19:709721.

    • Search Google Scholar
    • Export Citation
  • Merah, O., Deléens, E., Monneveux, P. 1999. Grain yield, carbon isotope discrimination, mineral and silicon content in durum wheat under different precipitation regimes. Physiologia Plantarum 107:387394.

    • Search Google Scholar
    • Export Citation
  • Merah, O., Deléens, E., Monneveux, P. 2001. Relationships between carbon isotope discrimination, dry matter production, and harvest index in durum wheat. J. of Plant Physiol. 158:723729.

    • Search Google Scholar
    • Export Citation
  • Misra, S.C., Randive, R., Rao, V.S., Sheshshayee, M.S., Serraj, R., Monneveux, P. 2006. Relationship between carbon isotope discrimination, ash content and grain yield in wheat in the Peninsular Zone of India. J. of Agron. and Crop Sci. 192:352362.

    • Search Google Scholar
    • Export Citation
  • Misra, S.C., Shinde, S., Geerts, S., Rao, V.S., Monneveux, P. 2010. Can carbon isotope discrimination and ash content predict grain yield and water use efficiency in wheat? Agric. Water Management 97:5765.

    • Search Google Scholar
    • Export Citation
  • Monneveux, P., Rekika, D., Acevedo, E., Merah, O. 2006. Effect of drought on leaf gas exchange, carbon isotope discrimination, transpiration efficiency and productivity in field grown durum wheat genotypes. Plant Sci. 170:867872.

    • Search Google Scholar
    • Export Citation
  • Monneveux, P., Reynolds, M.P., González-Santoyo, H., Peña, R.J., Mayr, L., Zapata, F. 2004a. Relationships between grain yield, flag leaf morphology, carbon isotope discrimination and ash content in irrigated wheat. J. of Agron. and Crop Sci. 190:395401.

    • Search Google Scholar
    • Export Citation
  • Monneveux, P., Reynolds, M.P., Trethowan, R., Peña, J., Zapata, F. 2004b. Carbon isotope discrimination, leaf ash content and grain yield in bread and durum wheat grown under full-irrigated conditions. J. of Agron. and Crop Sci. 190:389394.

    • Search Google Scholar
    • Export Citation
  • O’Leary, G.J., Connor, D.J. 1997. Stubble retention and tillage in a semi-arid environment: 3. Response of wheat. Field Crops Res. 54:3950.

    • Search Google Scholar
    • Export Citation
  • Pribyl, D.W. 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma 156:7583.

  • Sadras, V.O., Connor, D.J. 1991. Physiological basis of the response of harvest index to the fraction of water transpired after anthesis: a simple model to estimate harvest index for determinate species. Field Crops Res. 26:227239.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Chen, S., Sun, H., Pei, D., Wang, Y. 2008. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. Irrigation Sci. 27:110.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Chen, S., Sun, H., Wang, Y., Shao, L. 2010. Water use efficiency and associated traits in winter wheat cultivars in the North China Plain. Agric. Water Management 97:11171125.

    • Search Google Scholar
    • Export Citation
  • Zhu, L., Liang, Z.S., Xu, X., Li, S.H. 2008. Relationship between carbon isotope discrimination and mineral content in wheat grown under three different water regimes. J. of Agron. and Crop Sci. 194:421428.

    • Search Google Scholar
    • Export Citation
  • Zhu, L., Liang, Z.S., Xu, X., Li, S.H., Monneveux, P. 2009. Evidences for the association between carbon isotope discrimination and grain yield—ash content and stem carbohydrate in spring wheat grown in Ningxia (Northwest China). Plant Sci. 176:758767.

    • Search Google Scholar
    • Export Citation