View More View Less
  • 1 Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • | 2 International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
  • | 3 International Maize and Wheat Improvement Centre (CIMMYT), Mexico
Restricted access

The quest for precise and rapid phenotyping of germplasm is increasing the interest of breeders and physiologists in the application of remote sensing techniques in maize breeding. Twenty-four drought-tolerant maize inbred lines were crossed using a modified North Carolina II mating scheme to generate 96 single-cross hybrids. The parents and the hybrids were evaluated under full irrigation and drought stress conditions in the dry seasons of 2010 and 2011 at Ikenne, southwest Nigeria. Normalized difference vegetation index (NDVI) was recorded at 3- and 8-leaf growth stages. Hybrids differed significantly for NDVI. Both general (GCA) and specific (SCA) combining ability effects were significant for NDVI measured at 8-leaf stage under both irrigation regimes, with GCA accounting for 53% of the total variation under full irrigation. Both additive and non-additive genetic effects played significant roles in the inheritance of NDVI. The females GCA effects for grain yield was positively correlated with females GCA effects for NDVI (r = 0.72, p < 0.0001) and the male GCA effects for grain yield was also correlated with males GCA effects for NDVI (r = 0.78, p < 0.0001) at 8-leaf stage under full irrigation. These results indicate that live green biomass accumulation in maize could be identified through early screening of a large number of genotypes using NDVI for developing productive hybrids.

  • Adebayo, M.A., Menkir, A., Blay, E., Gracen, V., Danquah, E., Hearne, S. 2014a. Genetic analysis of drought tolerance in adapted × exotic crosses of maize inbred lines under managed stress conditions. Euphytica 196:261270.

    • Search Google Scholar
    • Export Citation
  • Adebayo, M.A., Menkir, A., Hearne, S. 2014b. Relationships between normalized difference vegetation index (NDVI) and other traits of tropical testcross maize (Zea mays L.) hybrids under drought and well-watered conditions. J. Appl. Agric. Res. 6:173180.

    • Search Google Scholar
    • Export Citation
  • Adebayo, M.A., Menkir, A., Malaku, G., Blay, E., Gracen, V., Danquah, E., Ladejobi, O. 2015. Diversity assessment of drought tolerant exotic and adapted maize inbred lines with microsatellite markers. J. Crop Sci. Biotech. 18:147154.

    • Search Google Scholar
    • Export Citation
  • Aparicio, N., Villegas, D., Casadesus, J., Araus, J.L., Royo, C. 2000. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron. J. 92:8391

    • Search Google Scholar
    • Export Citation
  • Araus, J.L., Casadesús, J., Bort, J. 2001. Recent tools for the screening of physiological traits determining yield. In: Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A. (eds), Application of Physiolograin Yield in Wheat Breeding. CIMMYT. Mexico. pp. 5977.

    • Search Google Scholar
    • Export Citation
  • Araus, J.L., Sanchez, C., Cabrera-Bosquet, L. 2010. Is heterosis in maize mediated through better water use? New Phytologist 187:392406.

    • Search Google Scholar
    • Export Citation
  • Barker, D.W., Sawyer, J.E. 2010. Using active canopy sensors to quantify corn nitrogen stress and nitrogen application rate. Agron. J. 102:964971.

    • Search Google Scholar
    • Export Citation
  • Bastidas, A.D., Barahona, R.R., Cerón-Muñoz, M. 2016. Variation in the normalized difference vegetation index (NDVI) in dairy farms in northern Antioquia. Livestock Research for Rural Development. LRDR Newsletter 28(3) http://www.lrrd.org/lrrd28/3/bast28043.html

    • Search Google Scholar
    • Export Citation
  • Cabrera-Bosquet, L, Molero, G., Stellacci, A.M., Bort, J., Nogués, S., Araus, J.L, Cabrera-Bosquet, L., Molero, G., Stellacci, A.M., Bort, J., Nogués, S., Araus, J.L. 2011. NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in heat genotypes subjected to different water and nitrogen conditions. Cereal Res. Commun. 39:147159.

    • Search Google Scholar
    • Export Citation
  • Comstock, R.E., Robinson, H.F. 1948. The components of genetic variance in population of biparental progenies and their use in estimating the average degree of dominance. Biometrics 4:254266.

    • Search Google Scholar
    • Export Citation
  • Deering, D.W. 1978. Rangeland reflectance characteristics measured by aircraft and spacecraft sensors. Ph.D. diss. Texas A&M Univ., College Station, USA.

    • Search Google Scholar
    • Export Citation
  • Derera, J., Tongoona, P., Vivek, B.S., Laing, M.D. 2008. Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments. Euphytica 162:411422.

    • Search Google Scholar
    • Export Citation
  • Dhliwayo, T., Pixley, K., Menkir, A., Warburton, M. 2009. Combining ability, genetic distances, and heterosis among elite CIMMYT and IITA tropical maize inbred lines. Crop Sci. 49:12011210.

    • Search Google Scholar
    • Export Citation
  • Edmeades, G.O., Bänziger, M., Chapman, S.C., Ribaut, J.M., Bolaños, J. 1995. Recent advances in breeding for drought tolerance in maize. In: Badu-Apraku, B. (ed.), Contributing to Food Self-sufficiency: Maize Research and Development in West and Central Africa. Proc. of a Regional Maize Workshop, 28 May–2 June 1995. IITA. Ibadan, Nigeria. pp. 2441

    • Search Google Scholar
    • Export Citation
  • El-Hendawy, S., Al-Suhaibani, N., Salem, A.E., Ur Rehman, S., Schmidhalter, U. 2015. Spectral reflectance indices as a rapid and nondestructive phenotyping tool for estimating different morphophysiological traits of contrasting spring wheat germplasms under arid conditions. Turkish J. of Agric. and Forestry 39:116.

    • Search Google Scholar
    • Export Citation
  • Elliott, G.A., Regan, K.L. 1993. Use of reflectance measurements to estimate early cereal biomass production on sandplain soils. Austr. J. Exp. Agric. 33:179183.

    • Search Google Scholar
    • Export Citation
  • Gizaw, S.A., Garland-Campbell, K., Cartera, A.H. 2016a. Use of spectral reflectance for indirect selection of yield potential and stability in Pacific Northwest winter wheat. Field Crops Res. 196:199206.

    • Search Google Scholar
    • Export Citation
  • Gizaw, S.A., Garland-Campbell, K., Cartera, A.H. 2016b. Evaluation of agronomic traits and spectral reflectance in Pacific Northwest winter wheat under rain-fed and irrigated conditions. Field Crops Res. 196:168179.

    • Search Google Scholar
    • Export Citation
  • Hallauer, A.R., Miranda-Fo, J.B. 1988. Quantitative Genetics in Maize Breeding. 2nd edn. Iowa State University Press. Ames, IO, USA.

  • Inman, D., Khosla, R., Reich, R.M., Westfall, D.G. 2008. Normalized difference vegetation index and soil color-based management zones in irrigated maize. Agron. J. 100: 6066.

    • Search Google Scholar
    • Export Citation
  • Kempthorne, O. 1957. An Introduction to Genetic Statistics. John Wiley and Sons, Inc. New York, USA.

  • Koller, M., Upadhyaya, S.K. 2005. Relationships between modifies normalized vegetation index and leaf area index for processing tomato. Appl. Engin. in Agric. 21:927933.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., Roder, M.S., Singh, R.P., Kumar, S., Chand, R., Joshi, A.K., Kumar, U. 2016. Mapping of spot blotch disease resistance using NDVI as a substitute to visual observation in wheat (Triticum aestivum L.). Mol. Breed. 36:95.

    • Search Google Scholar
    • Export Citation
  • Liu, K., Li, Y., Hu, H., Zhou, L., Xiao, X., Yu, P. 2015. Estimating rice yield based on normalized difference vegetation index at heading stage of different nitrogen application rates in southeast of China. J. of Environ. and Agric. Sci. 2:13.

    • Search Google Scholar
    • Export Citation
  • Lofton, J., Tubana, B.S., Kanke, Y., Teboh, J., Viator, H., Dalen, M. 2012. Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index. Sensors 12:75297547.

    • Search Google Scholar
    • Export Citation
  • Lopes, M.S., Reynolds, M.P. 2012. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenolograin yield. J. Exp. Bot. 63:37893798.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., Xu, J., Yuan, Z., Hao, Z., Xie, C., Li, X., Shah, T., Lan, H., Zhang, S., Rong, T., Xu, Y. 2012. Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Mol. Breed. 30:407418.

    • Search Google Scholar
    • Export Citation
  • Marti, J., Bort, J., Slafer, G.A., Araus, J.L. 2007. Can wheat yield be assessed by early measurements of NDVI? Ann. Appl. Biol. 150:253257.

    • Search Google Scholar
    • Export Citation
  • Meseka, S.K., Menkir, A., Ibrahim, A.E.S., Ajala, S.O. 2006. Genetic analysis of performance of maize inbred lines selected for tolerance to drought under low nitrogen. Maydica 51:487495.

    • Search Google Scholar
    • Export Citation
  • Morris, M.L., Risopoulos, J., Beck, D. 1999. Genetic changes in farmer-recycled maize seed; a review of the evidences. CIMMYT Economics Working Paper No. 99–07. CIMMYT. Mexico.

    • Search Google Scholar
    • Export Citation
  • NTech Industries. 2007. Model 505 Greenseeker handheld optical sensor unit operating manual. Available at http://www.ntechindustries.com/lit/gs/GS_Handheld_Manual_rev_K.pdf (verified 18 Jan. 2016). NTech Industries, Ukiah, CA, USA.

    • Search Google Scholar
    • Export Citation
  • Obsa, B.T., Eglinton, J., Coventry, S., March, T., Langridge, P., Fleury, D. 2016. Genetic analysis of developmental and adaptive traits in three doubled haploid populations of barley (Hordeum vulgare L.). Theor. Appl. Genet. 129:11391151.

    • Search Google Scholar
    • Export Citation
  • Pingali, P.L., Pandey, S. 2000. World maize needs meeting: technological opportunities and priorities for the public sector, In: Pingali, P.L. (ed.), 1999–2000 World Maize Facts and Trends. CIMMYT, Mexico. pp. 13.

    • Search Google Scholar
    • Export Citation
  • Price, J.C., Bausch, W.C. 1995. Leaf area index estimation from visible and near-infrared reflectance data. Remote Sens. Environ. 52:5565.

    • Search Google Scholar
    • Export Citation
  • Raun, W.R., Johnson, G.V., Stone, M.L., Sollie, J.B., Lukina, E.V., Thomason, W.E., Schepers, J.S. 2001. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron. J. 93:131138.

    • Search Google Scholar
    • Export Citation
  • Reynolds, M.P., Trethowan, R.M., van Ginkel, M., Rajaram, S. 2001. Application of physiolograin yield in wheat breeding. In: Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A. (eds), Application of Physiolograin Yield in Wheat Breeding. CIMMYT. Mexico. pp. 210.

    • Search Google Scholar
    • Export Citation
  • Romano, G., Zia, S., Sanchez, C., Araus, J.L., Müller, J. 2011. Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Computers and Electronics in Agric. 79:6774.

    • Search Google Scholar
    • Export Citation
  • Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. In: Third ERTS Symposium, NASA SP-351. NASA, Washington, D.C., USA, Vol. 1, pp. 309317.

    • Search Google Scholar
    • Export Citation
  • SAS Institute 2009. SAS Proprietary Software Release 9.2. SAS Institute, Inc., Cary, NC, USA.

  • Teal, R.K., Tubana, B., Girma, K., Freeman, K.W., Arnall, D.B., Walsh, O., Raun, W.R. 2006. In-season prediction of corn grain yield. Potential using normalized difference vegetation index. Agron. J. 98:14881494.

    • Search Google Scholar
    • Export Citation
  • Valipour, M. 2013a. Necessity of irrigated and rainfed agriculture in the world. Irrigation and Drainage Systems Engineering S9:e001.

  • Valipour, M. 2013b. Evolution of irrigation-equipped areas as share of cultivated areas. Irrigation and Drainage Systems Engineering 2:e114.

    • Search Google Scholar
    • Export Citation
  • Valipour, M. 2013c. Increasing irrigation efficiency by management strategies: cutback and surge irrigation. ARPN J. of Agric. and Biol. Sci. 8:3543.

    • Search Google Scholar
    • Export Citation
  • Valipour, M. 2016. How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? Agriculture 6:53.

    • Search Google Scholar
    • Export Citation
  • Xijie, L. 2013. Remote sensing, normalized difference vegetation index (NDVI), and crop yield forecasting. M.Sc. Thesis, University of Illinois at Urbana-Champaign, IL, USA. 163 p.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., Xu, Z., Zuo, D., Wang, X. 2015. Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, China. Water Sci. and Engin. 8:18.

    • Search Google Scholar
    • Export Citation

Click HERE for submission guidelines

Manuscript submission: CRC Manuscript Submission

 

Senior editors

Editor(s)-in-Chief: Pauk, János

Technical Editor(s): Hajdu Buza, Kornélia

Technical Editor(s): Lantos, Csaba

Editorial Board

  • A. Aniol (Poland)
  • P. S. Baenziger (USA)
  • R.K. Behl (India)
  • F. Békés (Australia)
  • L. Bona (Hungary)
  • A. Börner (Germany)
  • R. N. Chibbar (Canada)
  • S. Gottwald (Germany)
  • A. Goyal (Canada)
  • H. Grausgruber (Austria)
  • T. Harangozó (Hungary)
  • E. Kapusi (Austria)
  • E.K. Khlestkina (Russia)
  • J. Kolmer (USA)
  • V. Korzun (Germany)
  • R. A. McIntosh (Australia)
  • Á. Mesterházy (Hungary)
  • A. Mohan (USA)
  • I. Molnár (Hungary)
  • M. Molnár-Láng (Hungary)
  • A. Pécsváradi (Hungary)
  • S. K. Rasmussen (Denmark)
  • N. Rostoks (Latvia)
  • M. Taylor (Germany)
  • J. Zhang (China)
  • X.F. Zhang (USA)

 

Senior Editorial Board

  • P. Bartos (Czech Republic)
  • H. Bürstmayr (Austria)
  • J. Johnson (USA)
  • Z. Kertész (Hungary)
  • G. Kimber (USA)
  • J. Matuz (Hungary)

Cereal Research Communications
Cereal Research Non-Profit Ltd. Company
Address: P.O. Box 391, H-6701 Szeged, Hungary
Phone: +36 62 435 235
Fax: +36 62 420 101
E-mail: crc@gk-szeged.hu

Indexing and Abstracting Services:

  • AgBiotechNet Abstracts
  • Agricola
  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Current Contents/Agriculture
  • Biology & Environmental Sciences
  • ISI Web of Science/li>
  • Science Citation Index Expanded
  • SCOPUS

 

Cereal Research Communications
Language English
Size B5
Year of
Foundation
1973
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3720 (Print)
ISSN 1788-9170 (Online)