View More View Less
  • 1 Genetic Resources Institute, Baku AZ1106, Azerbaijan
  • 2 Research Institute of Crop Husbandry, Gobustan AZ3700, Gobustan, Azerbaijan
  • 3 Kazakh Research Institute of Farming and Crops, Almalybak, Almaty region, Kazakhstan
  • 4 Omsk State Agricultural University, Omsk 644008, Russia
  • 5 CIMMYT, P.K. 39 Emek, 06511 Ankara, Turkey
Restricted access

Hexaploid synthetic wheat, derived from crosses between durum wheat and Aegilops tauschii, is widely accepted as an important source of useful traits for wheat breeding. During 2015 and 2016, three groups of synthetics were studied in Azerbaijan (3 sites) and Russia (1 site). Group 1 comprised CIMMYT primary synthetics derived from eastern European winter durum wheats crossed to Ae. tauschii accessions from the Caspian Sea basin. Group 2 included lines derived from CIMMYT synthetics × bread wheat crosses. Group 3 consisted of synthetics developed in Japan by crossing durum variety Langdon with a diverse collection of Ae. tauschii accessions. Varieties Bezostaya-1 and Seri were used as checks. Group 1 synthetics were better adapted and more productive than those in group 3, indicating that the durum parent plays an important role in the adaptation of synthetics. Compared to Bezostaya-1 synthetics produced fewer spikes per unit area, an important consideration for selecting bread wheat parents for maintenance of productivity. Synthetics had longer spikes but were not generally free-threshing. All synthetics and derivatives had 1000-kernel weights comparable to Bezostya-1 and significantly higher than Seri. All primary synthetics were resistant to leaf rust, several to stem rust, and few to stripe rust. Superior genotypes from all three groups that combine high expression of spike productivity traits and stress tolerance index were identified.

  • Ali, M.B., El-Sadek, A.N. 2016. Evaluation of drought tolerance indices for wheat (Triticum aestivum L.) under irrigated and rainfed conditions. Commun. in Biometry and Crop Sci. 11:7789.

    • Search Google Scholar
    • Export Citation
  • Becker, S.R., Byrne, P.F., Reid, S.D., Bauerle, W.L., McKay, J.K., Haley, S.D. 2016. Root traits contributing to drought tolerance of synthetic hexaploid wheat in a greenhouse study. Euphytica 307:213224.

    • Search Google Scholar
    • Export Citation
  • Dunckel, S., Crossa, J., Wu, Shuangye, Bonnett, D., Poland, J. 2017. Genomic selection for increased yield in synthetic-derived wheat. Crop Sci. 57:713725.

    • Search Google Scholar
    • Export Citation
  • Gaju, O , DeSilva, J., Carvalho, P., Hawkesford, M.J., Griffiths, S., Greenland, A., Foulkes, M.J. 2016. Leaf photosynthesis and associations with grain yield, biomass and nitrogen-use efficiency in landraces, synthetic- derived lines and cultivars in wheat. Field Crop Res. 193:115.

    • Search Google Scholar
    • Export Citation
  • Jafarzadeh, J., Bonnett, D., Jannink, J.-L., Akdemir, D., Dreisigacker, S., Sorrells, M.E. 2016. Breeding value of primary synthetic wheat genotypes for grain yield. PLoS ONE 11:e0162860.

    • Search Google Scholar
    • Export Citation
  • Jighly, A., Alagu, M., Makdis, F., Singh, M., Singh, S., Emebiri, L.C., Ogbonnaya, F.C. 2016. Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Mol. Breeding 36:127.

    • Search Google Scholar
    • Export Citation
  • Matsuoka, Y., Takumi, S., Kawahara, T. 2007. Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theor. Appl. Genet. 115:509518.

    • Search Google Scholar
    • Export Citation
  • Mujeeb-Kazi, A., Gul, A., Farooq, M., Rizwan, S., Ahmad, I. 2008. Rebirth of synthetic hexaploids with global implications for wheat improvement. Aust. J. of Agric. Res. 59:391398.

    • Search Google Scholar
    • Export Citation
  • Morgounov, A., Abugalieva, A., Akan, K., Akın, B., Baenziger, S., Bhatta, M., Dababat, A.A., Demir, L., Dutbayev, Ye., El Bouhssini, M., Erginbaş-Orakci, G., Kishii, M., Keser, M., Koç, E., Kurespek, A., Mujeeb-Kazi, A., Yorgancılar, A., Özdemir, F., Özturk, I., Payne, T.S., Qadimaliyeva, G., Shamanin, V., Subasi, K., Suleymanova, G., Yakişir, E., Zelenskiy, Yu. 2017. High-yielding winter synthetic hexaploid wheats resistant to multiple diseases and pests. Plant Genet. Res. doi:10.1017/S147926211700017X.

    • Search Google Scholar
    • Export Citation
  • Ogbonnaya, F.C., Abdalla, O., Mujeeb-Kazi, A., Kazi, A.G., Xu, S.S., Gosman, N., Lagudah, E.S. 2013. Synthetic hexaploids: harnessing species of primary gene pool for wheat improvement. Plant Breeding Rev. 37:35122.

    • Search Google Scholar
    • Export Citation
  • Pinto, R.S., Molero, G., Reynolds, M.P. 2017. Identification of heat tolerant wheat lines showing genetic variation in leaf respiration and other physiological traits. Euphytica 213: DOI 10.1007/s10681-017-1858-8.

  • Terrile, I.T., Miralles, D.J., González, F.G. 2017. Fruiting efficiency in wheat (Triticum aestivum L.): Trait response to different growing conditions and its relation to spike dry weight at anthesis and grain weight at harvest. Field Crops Res. 201:8696.

    • Search Google Scholar
    • Export Citation
  • Trethowan, R.M., Mujeeb-Kazi, A. 2008. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci. 48:12551265.

    • Search Google Scholar
    • Export Citation