View More View Less
  • 1 ICAR-Indian Institute of Wheat & Barley Research, Karnal-132001 (HR)
Restricted access

Genotype by environment interaction distorts genetic analysis, changes relative ranking of genotypes and a major obstruction for varietal release. AMMI model is a quick and relevant tool to judge environmental behaviour and genotypic stability in comparison to ANOVA, multiplicative model and linear regressions. We evaluated 19 barley genotypes grown at 08 diverse locations to identify discriminating environments and ideal genotypes with dynamic stability. In AMMI ANOVA, the locations and genotype by environment interaction exhibited 66% and 14.7% of the total variation. The initial first two principal components showed significant interaction with 36.0 and 28.4% variation, respectively. AMMI1 biplot showed that the environments Bawal, Ludhiana and Durgapura were high yielding with high IPCA1 scores and located far away from the biplot origin. However, in AMMI1and AMMI2 biplots the locations Hisar, Ludhiana, Karnal, Bathinda and Modipuram were found suitable with low IPCA2 scores. Yield stability index (YSI) was highly useful with ASV ranks and the genotypes DWRB150 and BH1013 and checks BH902, DWRUB52 and DWRB101 were selected for high grain yield and wider adaptability across the locations.

  • Alwala, S., Kwolek, T., McPherson, M., Pellow, J., Meyer, D. 2010. A comprehensive comparison between Eberhart and Russell joint regression and GGE biplot analyses to identify stable and high yielding maize hybrids. Field Crop Res. 119:225230.

    • Search Google Scholar
    • Export Citation
  • Asfaw, A., Alemayehu, F., Gurum, F., Atnaf, M. 2009. AMMI and SREG GGE biplot analysis for matching varieties onto soybean production environments in Ethiopia. Scientific Res. and Essay 4:13221330.

    • Search Google Scholar
    • Export Citation
  • Baik, B.K., Ullrich, S.E. 2008. Barley for food: characteristics, improvement, and renewed interest. J. of Cereal Sci. 48:233242.

  • Becker, H.C., Leon J. 1988. Stability analysis in plant breeding. Plant Breeding 101:123.

  • Crossa, J., 2012. From genotype x environment interaction to gene x environment interaction. Current Genomics 13:225244.

  • Eberhart, S.A., Russell, W.A. 1966. Stability parameters for comparing varieties. Crop Sci. 6:3640. FAOSTAT. 2017: FAOSTAT. Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy. Available at http://faostat3.fao.org (accessed April, 2017).

    • Search Google Scholar
    • Export Citation
  • Finlay, K.W., Wilkinson, G.N. 1963. The analysis of adaptation in a plant breeding programme. Crop and Pasture Sci. 14:742754.

  • Flores, F., Moreno, M.T., Cubero, J.I. 1998. A comparison of univariate and multivariate methods to analyze G×E interaction. Field Crops Research 56:271286.

    • Search Google Scholar
    • Export Citation
  • Gabriel, K.R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453467.

  • Gauch, H.G. 1988. Model selection and validation for yield trials with interaction. Biometrics 88:705715.

  • Gauch, H.G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 46:14881500.

  • Gauch, H.G., Piepho, H.P., Annicchiarico, P. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48:866889.

    • Search Google Scholar
    • Export Citation
  • Kuchanur, P. H., Salimath, P.M., Wali, M.C., Hiremath, C. 2015. GGE biplot analysis for grain yield of single cross maize hybrids under stress and non-stress conditions. Indian J. Genet. 75:514517.

    • Search Google Scholar
    • Export Citation
  • Kumar V. , Kharub, A.S., Verma, R.P.S., Verma, A. 2016a. Applicability of joint regression and biplot models for stability analysis in multi-environment barley (Hordeum vulgare) trials. Indian Journal of Agril. Sci. 86:14431448.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., Khippal, A., Singh, J., Selvakumar, R., Malik, R., Kumar, D., Kharub, A.S., Verma, R.P.S., Sharma, I. 2014. Barley research in India: retrospect and prospects. Journal of Wheat Res. 6:120.

    • Search Google Scholar
    • Export Citation
  • Kumar, V. A. S., Kharub, R. P. S. Verma, A. Verma, 2016b: AMMI, GGE biplots and regression analysis to comprehend the G × E interaction in multi-environment barley trials. Indian Journal of Genet. 76:202204.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., Kumar, R., Verma., R.P.S., Verma, A., Sharma, I. 2013. Recent trends in breeder seed production of barley (H. vulgare L.) in India. Indian Journal of Agril. Sci. 83:576578.

    • Search Google Scholar
    • Export Citation
  • Mohammadi, R., Amri, A. 2013. Genotype x environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica 192:227249.

    • Search Google Scholar
    • Export Citation
  • Mortazavian, S.M., Nikkhah, H.R., Hassani, F.A., Sharif-al-Hosseini, M., Taheri, M., Mahlooji, M. 2014. GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. J. of Agril. Sci. and Tech. 16:609622.

    • Search Google Scholar
    • Export Citation
  • Nurminiemi, M., Madsen, S., Rognli, O.A., Bjornstad, A., Ortiz, R. 2002. Analysis of the genotype-by-environment interaction of spring barley tested in the Nordic Region of Europe: Relationships among stability statistics for grain yield. Euphytica 127:123132.

    • Search Google Scholar
    • Export Citation
  • Oliveira, E.J., Freitas, J.P., Jesus, O.N. 2014. AMMI analysis of the adaptability and yield stability of yellow passion fruit varieties. Scientia Agricola. 71:139145.

    • Search Google Scholar
    • Export Citation
  • Purchase, J.L., Hatting, H., Vandeventer, C.S. 2000. Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa. II. Stability analysis of yield performance. South African J. of Plant and Soil 17:101107.

    • Search Google Scholar
    • Export Citation
  • Rad, M.R.N., Kadir, M.A., Rafii, M.Y., Jaafar, H.Z., Naghavi, M.R., Ahmadi, F. 2013. Genotype× environment interaction by AMMI and GGE biplot analysis in three consecutive generations of wheat (Triticum aestivum) under normal and drought stress conditions. Aus. J. of Crop Sci. 7:956961.

    • Search Google Scholar
    • Export Citation
  • Raggi, L., Ciancaleoni, S., Torricelli, R., Terzi, V., Ceccarelli, S., Negri, V. 2017. Evolutionary breeding for sustainable agriculture: Selection and multi-environmental evaluation of barley populations and lines. Field Crops Res. 204:7688.

    • Search Google Scholar
    • Export Citation
  • Rakshit, S., Ganapathy, K., Gomashe, S., Dhandapani, A., Swapna, M., Mehtre, S., Gadakh, S., Ghorade, R., Kamatar, M., Jadhav, B., Das, I. 2017. Analysis of Indian post-rainy sorghum multi-location trial data reveals complexity of genotype× environment interaction. The J. of Agril. Sci. 155:4459.

    • Search Google Scholar
    • Export Citation
  • Rakshit, S., Ganapathy, K.N., Gomashe, S.S., Rathore, A., Ghorade, R.B., Kumar, M.V.N., Ganesmurthy, K., Jain, S.K., Kamtar, M.Y., Sachan, J.S., Ambekar, S.S., Ranwa, B.R., Kanawade, D.G., Balusamy, M., Kadam, D., Sarkar, A., Tonapi, V.A., Patil, J. V. 2012. GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data. Euphytica 185:465479.

    • Search Google Scholar
    • Export Citation
  • Sousa, L.B., Hamawaki, O.T., Nogueira, A.P., Batista, R.O., Oliveira, V.M., Hamawaki, R.L. 2015. Evaluation of soybean lines and environmental stratification using the AMMI, GGE biplot, and factor analysis methods. Genetics and Mol. Res. 14:1266012674.

    • Search Google Scholar
    • Export Citation
  • Yan, W., Kang, M.S., Ma, B., Woods, S., Cornelius, P.L. 2007. GGE biplot vs. AMMI analysis of genotype-byenvironment data. Crop Sci. 47:643653.

    • Search Google Scholar
    • Export Citation

Click HERE for submission guidelines

Manuscript submission: CRC Manuscript Submission

 

Senior editors

Editor(s)-in-Chief: Pauk, János

Technical Editor(s): Hajdu Buza, Kornélia

Technical Editor(s): Lantos, Csaba

Editorial Board

  • A. Aniol (Poland)
  • P. S. Baenziger (USA)
  • R.K. Behl (India)
  • F. Békés (Australia)
  • L. Bona (Hungary)
  • A. Börner (Germany)
  • R. N. Chibbar (Canada)
  • S. Gottwald (Germany)
  • A. Goyal (Canada)
  • H. Grausgruber (Austria)
  • T. Harangozó (Hungary)
  • E. Kapusi (Austria)
  • E.K. Khlestkina (Russia)
  • J. Kolmer (USA)
  • V. Korzun (Germany)
  • R. A. McIntosh (Australia)
  • Á. Mesterházy (Hungary)
  • A. Mohan (USA)
  • I. Molnár (Hungary)
  • M. Molnár-Láng (Hungary)
  • A. Pécsváradi (Hungary)
  • S. K. Rasmussen (Denmark)
  • N. Rostoks (Latvia)
  • M. Taylor (Germany)
  • J. Zhang (China)
  • X.F. Zhang (USA)

 

Senior Editorial Board

  • P. Bartos (Czech Republic)
  • H. Bürstmayr (Austria)
  • J. Johnson (USA)
  • Z. Kertész (Hungary)
  • G. Kimber (USA)
  • J. Matuz (Hungary)

Cereal Research Communications
Cereal Research Non-Profit Ltd. Company
Address: P.O. Box 391, H-6701 Szeged, Hungary
Phone: +36 62 435 235
Fax: +36 62 420 101
E-mail: crc@gk-szeged.hu

Indexing and Abstracting Services:

  • AgBiotechNet Abstracts
  • Agricola
  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Current Contents/Agriculture
  • Biology & Environmental Sciences
  • ISI Web of Science/li>
  • Science Citation Index Expanded
  • SCOPUS

 

Cereal Research Communications
Language English
Size B5
Year of
Foundation
1973
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3720 (Print)
ISSN 1788-9170 (Online)