Wheat kernel morphology is a very important trait for wheat yield improvement. This is the first report of association analysis of kernel morphology traits in wheat breeding lines. In Qinghai, China, the research described here involved genome-wide association analysis in breeding lines derived from synthetic hexaploid wheat with a mixed linear model to identify the quantitative trait loci (QTLs) related to kernel morphology. The 8033 effective Diversity Array Technology (DArT) markers produced a genetic map of 5901.84 cM with an average density of 1.36 markers/cM. Population structure analysis classified 507 breeding lines into three groups by Bayesian structure analysis using unlinked markers. Linkage disequilibrium decay was observed with a map coverage of 2.78 cM. Marker-trait association analysis showed that 15 DArT markers for kernel morphology were detected, located on nine chromosomes, and explained 2.6%–4.0% of the phenotypic variation of kernel area (KA), kernel width (KW), kernel length (KL) and thousand-kernel weight (TKW). The marker 1139297 was related to both the KL and KA traits. Only six DArT markers were close to known QTLs. The parent SHW-L1 carried eight favored alleles, while other seven favored alleles were derived from elite common wheat cultivars. These QTLs, identified in elite breeding lines, should help us understand the kernel morphology trait better, and to provide germplasm for breeding new wheat cultivars for Qinghai Province or other regions.