View More View Less
  • 1 INRA-UCA GDEC, 5 chemin de Beaulieu, F-63000 Clermont-Ferrand, France
  • | 2 INRA IGEPP, Domaine de la Motte au Vicomte BP35327, F-35653, Le Rheu Cedex
  • | 3 GIE TRITICALE, 7 rue Coq-héron, F-75030, Paris cedex 01
Restricted access

In order to increase genetic diversity in cereals, interspecific or even intergeneric crosses are worthwhile, especially wheat by rye crosses for triticale production. However, these crosses often fail due to inhibiting genes. To overcome this obstacle, crossability trait, present in a few wheat cultivars, can be transferred into other wheat lines of agronomical interest. Nevertheless, this transfer remains tedious through conventional backcrossing methods because it is a recessive trait, which requires selfing generations and complex evaluation by many crosses. Here, we present a marker-assisted backcrossing method to transfer this trait more quickly and easily. We chose to introduce the recessive crossability skr, located on chromosome 5BS and originating from Asian wheat, into Barok, a non-crossable French wheat cultivar, with good agronomic characteristics. Six molecular markers, close to the Skr locus, were used to check the transfer of the gene at each of the three backcrosses, without selfing generation nor crosses with rye. Finally, we crossed the predicted crossable lines with rye to validate their crossability. We obtained sixteen lines, morphologically similar to Barok, exhibiting high crossability rate (30%). The markers were thus efficient to transfer the skr crossability but they remain too far from the Skr locus to be considered as diagnostic markers. Indeed, genotyping and phenotyping on other wheat cultivars showed some discrepancies. Nevertheless, this opens the way to enhance genetic diversity more easily and to improve traits of agronomic interest in triticale or wheat as well as to study further barriers to intergeneric crosses.

  • Alfares, W., Bouguennec, A., Balfourier, F., Gay, G., Berges, H., Vautrin, S., Sourdille, P., Bernard, M., Feuillet, C. 2009. Fine mapping and marker development for the crossability gene Skr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.). Genetic. 183(2):469481.

    • Search Google Scholar
    • Export Citation
  • Backhouse, W.O. 1916. A note on the inheritance of crossability. J. Genet. 6(2):9194.

  • Cubero, J.I., Martín, A., Millán, T., Gómez-Cabrera, A., de Haro, A. 1986. Tritordeum –a new alloploid of potential importance as a protein source crop. Crop Scienc. 26(6):11861190.

    • Search Google Scholar
    • Export Citation
  • Feldman, M. 2001. In The World Wheat Book. A history of wheat breeding (In: eds Bonjean A.P. & Angus W.J.) pp. 3–56 (Tec. & Doc. Editions, London).

    • Search Google Scholar
    • Export Citation
  • Friebe B. , Jiang J., Raupp W.J., McIntosh, R.A., Gill, B.S. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytic. 91:5987.

    • Search Google Scholar
    • Export Citation
  • Gay, G., Bernard, M. 1994. Production of intervarietal substitution lines with improved interspecific crossability in the wheat cv Courtot. Agronomi. 14:2732.

    • Search Google Scholar
    • Export Citation
  • Ginkel, M. van, Ogbonnaya, F. 2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Research 104(1/3):8694.

    • Search Google Scholar
    • Export Citation
  • Jiang, J.M., Friebe, B., Gill, B.S. 1994. Recent advances in alien gene-transfer in wheat. Euphytic. 73:199212.

  • Krolow, K.D. 1970. Untersuchtungen über die Kreuzbarkeit zwischen Weizen und Roggen. (Investigations on compatibility between. wheat and rye). Z. Planzenzüchtg. 64:4472.

    • Search Google Scholar
    • Export Citation
  • Lamoureux, D., Boeuf, C., Regad, F., Garsmeur, O., Charmet, G., Sourdille, P., Lagoda, P., Bernard, M. 2002. Comparative mapping of the wheat 5B short chromosome arm distal region with rice, relative to a crossability locus. Theor. Appl. Genet. 105:759765.

    • Search Google Scholar
    • Export Citation
  • Lange, W., Riley, R. 1973. Position on chromosome 5B of wheat of locus determining crossability with rye. Gentical Researc. 22(2):143153.

    • Search Google Scholar
    • Export Citation
  • Lein, A. 1943. Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. (The genetical basis of the crossability between wheat and rye). Z. Indukt. Abstamm. Vererb. Lehr. 81:2859.

    • Search Google Scholar
    • Export Citation
  • Molnár-Láng, M., Linc, G., Sutka, J., 1996. Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90:301305.

    • Search Google Scholar
    • Export Citation
  • Oettler, G. 1982. Effect of parental genotype on crossability and response to colchicine treatment in wheat-rye hybrids. Z. Planzenzüchtg. 88(4):322330.

    • Search Google Scholar
    • Export Citation
  • Oettler, G. 2005. The fortune of a botanical curiosity – Triticale: past, present and future. J. Agric. Sci. 143:329346.

  • Paux, E., Faure, S., Choulet, F., Roger, D., Gauthier, V., Martinant, J.-P., Sourdille, P., Balfourier, F., Le Paslier, M.-C., Chauveau, A., Cakir, M., Gandon, B., Feuillet, C. 2010. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnology Journal, 8:196210.

    • Search Google Scholar
    • Export Citation
  • Schneider, A., Molnar, I., Molnar-Lang, M. 2008. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytic. 163:119.

    • Search Google Scholar
    • Export Citation
  • Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149(4):20072023.

    • Search Google Scholar
    • Export Citation
  • Schneider, A., Molnar, I., Molnar-Lang, M. 2008. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytic. 163:119.

    • Search Google Scholar
    • Export Citation
  • Shepherd, K.W., Islam, A.K.M.R. 1988. Fourth compendium of wheat-alien chromosome lines. pp. 1373–1395. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Cambridge, England.

    • Search Google Scholar
    • Export Citation
  • Sitch, L.A., Snape, J.W., Firman, S.J. 1985. Intrachromosomal mapping of crossability genes in wheat (Triticum aestivum). Theor. Appl. Genet. 70:309314.

    • Search Google Scholar
    • Export Citation
  • Taira, T., Lelley, T., Larter, E.N. 1978. Influence of parental rye on development of embryos and endosperm of wheat-rye hybrids. Can. J. of Botan. 56(4):386390.

    • Search Google Scholar
    • Export Citation
  • Tixier, M.H., Sourdille, P., Charmet, G., Gay, G., Jaby, C., Cadalen, T., Bernard, S., Nicolas, P., Bernard, M. 1998. Detection of QTLs for crossability in wheat using a doubled haploid population. Theor. Appl. Genet. 97:10761082.

    • Search Google Scholar
    • Export Citation
  • Zeller, F.J., Hsam, S.L.K. 1984. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In S. Sakamoto (ed.), Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan, 28 Nov.–3 Dec. 1983. Plant Germplasm Int., Kyoto University, Kyoto, Japan. pp. 161–173.

    • Search Google Scholar
    • Export Citation
  • Zeven, A.C. 1987. Crossability percentages of some 1400 bread wheat varieties and lines with rye. Euphytic. 36:299319.

  • Zheng, Y.L., Luo, M.C., Yen, C., Yang, J.L. 1992. Chromosome location of a new crossability gene in common wheat. Wheat Inf. Servic. 75:3640.

    • Search Google Scholar
    • Export Citation