Authors:
J. Kumar Chandra Shekhar Azad University of Agriculture & Technology, Kanpur-208002 (Uttar Pradesh), India

Search for other papers by J. Kumar in
Current site
Google Scholar
PubMed
Close
,
A. Kumar Govind Ballabh Pant University of Agriculture & Technology, Pantnagar-263145 (Uttarakhand), India

Search for other papers by A. Kumar in
Current site
Google Scholar
PubMed
Close
,
M. Kumar Mandan Bharti Agriculture College, Agwanpur, Saharsa-852201 (Bihar), India

Search for other papers by M. Kumar in
Current site
Google Scholar
PubMed
Close
,
S.K. Singh Chandra Shekhar Azad University of Agriculture & Technology, Kanpur-208002 (Uttar Pradesh), India

Search for other papers by S.K. Singh in
Current site
Google Scholar
PubMed
Close
, and
L. Singh Chandra Shekhar Azad University of Agriculture & Technology, Kanpur-208002 (Uttar Pradesh), India

Search for other papers by L. Singh in
Current site
Google Scholar
PubMed
Close
Restricted access

In order to study the inheritance pattern of morpho-physiological traits in bread wheat, a 10×10 diallel cross, excluding reciprocals was made and grown in a randomized complete block design (RCBD) with three replications. Observations were recorded on Days to 75% flowering (DF), Days to maturity (DM), Duration of reproductive phase (DRP), Plant height (cm) (PH), Effective tiller/plant (TLS), No. of spikelets per spike (SLS), No. of grains per spike (GS), Grain weight per spike (g) (GW), Spike length (cm) (SL), Biological yield per plant (g) (BY), Harvest index (%) (HI), 1000-Grain weight (g) (TGW), Spike density (SD), Canopy temperature depression (°C) (CTD), Chlorophyll intensity (%) (CI), Chlorophyll fluorescence (Fv/Fm) (CF), Protein content (%) (PC), Grain yield per plant (g) (GY). Highly significant differences were observed among the genotypes for all traits. The resulted 45 F1s and their F2s used for study the nature of gene for grain yield and its contributing traits in bread wheat. The result indicated that considerable gene action and average degree of dominance respond to achieving significant result for grain yield and its component traits. In both the generations F1s and F2s, grain yield per plant (g) was governed by non-additive gene action based on combining ability analysis, (σ2 g/σ2 s)0.5 [GCA and SCA variance ratio] and (H1/D)0.5 [Degree of dominance] were exhibited over dominance type average degree of dominance for grain yield and its component traits in both generations. Genetic analyses of the traits confirm the involvement of both additive and non-additive gene effects in governing the inheritance.

  • Ahmad, F., Khan, S., Ahmad, S.Q., Khan, H., Khan, A., Muhammad, F. 2011. Genetic analysis of some quantitative traits in bread wheat across environments. Afr. J. Agric. Res. 6(3): 686692.

    • Search Google Scholar
    • Export Citation
  • Ahmad, I., Mahmood, N., Khaliq, I., Khan, N. 2016. Genetic analysis for five important morphological attributes in wheat (Triticum aestivum L.). J. Anim. P. 26(3): 725730.

    • Search Google Scholar
    • Export Citation
  • Ajmal, S., Khaliq, I., Rehman, A. 2011. Genetic analysis for yield and some yield traits in bread wheat (Triticum aestivum L.). J. Agric. Res. 49: 447454.

    • Search Google Scholar
    • Export Citation
  • Desai, S.A., Lohithaswa, H.C., Hanchinal, R.R., Patie, B.N., Kalappanavar, I.K., Math, K.K. 2005. Combining ability for quantitative traits in bread wheat (Triticum aestivum L.). Indian J. Genet. 65: 311312.

    • Search Google Scholar
    • Export Citation
  • El-Maghraby, M.A., Moussa, M.E., Hana, N.S., Agrama, H.A. 2005. Combining ability under drought stress relative to SSR diversity in common wheat. Euphytica 141: 301308.

    • Search Google Scholar
    • Export Citation
  • Golparvar, A.R., Islam, M.H., Darvish, F., Abdolmajid, R., Abdollah, G.P. 2004. Genetic assessment of some morpho-physiological traits in bread wheat under drought conditions. Agron. Hort. 62: 9095.

    • Search Google Scholar
    • Export Citation
  • Gurmani, R.R., Khan, S.J., Khan, Z.A.S.R., Shakeel, A., Ullah, M. 2007. Genetic evaluation of some yield and yield related traits in wheat. Pakistan J. Agric. Sci. 44: 611.

    • Search Google Scholar
    • Export Citation
  • Hayman, B.I. 1954. The theory and analysis of diallel crosses. Genetics 39: 789809.

  • Iqbal, M., Navabi, A., Salmon, D.F., Yang, R.C., Murdoch, B.M., Moore, S.S., Spaner, D. 2007. Genetic analysis of flowering and maturity time in high latitude spring wheat. Euphytica 154: 207218.

    • Search Google Scholar
    • Export Citation
  • Jinks, J.L. 1955. A survey of the genetical basis of heterosis in variety of diallel crosses. Heredity 9: 223238.

  • Khan, M.Q., Alm, K. Choudhary, M.A. 1992. Diallel cross analysis of some morphological traits in spring wheat. Pakistan J. Agric. Sci. 37: 328339.

    • Search Google Scholar
    • Export Citation
  • Nayeem, K.A. 1994. Genetic architecture of flowering and maturity in wheat (Triticum aestivum L.). Indian J. Genet. 54(1): 6366.

  • Prodanovic, S. 1993. Genetic values of F1 wheat hybrids obtained in diallel crosses. Review of Research work at the faculty of Agriculture, Belgrade 38(2): 2527.

    • Search Google Scholar
    • Export Citation
  • Rizza, F., Pagani, D., Stanca, A.M., Cattivelli, L. 2001. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. S. Afr. J. Bot. 120: 389396.

    • Search Google Scholar
    • Export Citation
  • Sharma, S.K., Singh, K.P., Singh, I. 1991. Selection response for grain weight in some intermated populations of wheat (Triticum aestivum L.). Proc. Golden Jubilee Symposium: Indian Soc. Genet. Plant Breed. New Delhi, Abstr. II: pp. 357.

    • Search Google Scholar
    • Export Citation
  • Singh, G., Bhullar, G.S., Gill, K.S. 1988. Inheritance of yield and its components in an intervarietal cross of bread wheat. Crop Improv. 15: 200202.

    • Search Google Scholar
    • Export Citation
  • Singh, M., Srivastava, J.P., Kumar, A. 1990. Effect of water on water potential components in wheat genotypes. Indian J. Plant Physiol. 33: 312317.

    • Search Google Scholar
    • Export Citation
  • Singh, M.K., Sharma, P.K., Tyagi, B.S., Singh, G. 2014. Combining ability analysis for yield and protein content in bread wheat (Triticum aestivum L.). Indian J. Agric. Sci. 84(3): 328336.

    • Search Google Scholar
    • Export Citation
  • Singh, P., Narayanan, S.S. 1993. Biometrical techniques in plant breeding. First Edn. Kalayani publishers, New Delhi, India.

  • Singh, S.P., Singh, R.K., Singh, J., Agarwal, R.K. 1990. Combining ability for yield and some of its important components in induced mutants of bread wheat. Indian J. Genet. 50: 167170.

    • Search Google Scholar
    • Export Citation
  • Ullah, S., Khan, A.S., Raza, A., Sadique, S. 2010. Gene action analysis of yield and yield related traits in spring wheat (Triticum aestivum). Int. J. Agric. Biol. 12: 125128.

    • Search Google Scholar
    • Export Citation
  • Vanpariya, L.G., Chovatia, V.P., Mehta, D.R. 2006. Combining ability studies in bread wheat (Triticum aestivum L.). National J. Pl. Improv. 8(2): 132137.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

 

 

For subscription options, please visit the website of Springer Nature.

Cereal Research Communications
Language English
Size A4
Year of
Foundation
1973
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3720 (Print)
ISSN 1788-9170 (Online)