Authors:
L. Kaur Punjab Agricultural University, Ludhiana-141004, Punjab, India

Search for other papers by L. Kaur in
Current site
Google Scholar
PubMed
Close
,
B. Asthir
Search for other papers by B. Asthir in
Current site
Google Scholar
PubMed
Close
, and
N.S. Bains Punjab Agricultural University, Ludhiana-141004, Punjab, India

Search for other papers by N.S. Bains in
Current site
Google Scholar
PubMed
Close
Restricted access

The present investigation was carried out to study the distinct salt tolerance mechanism in two sets of material, Gly II transgenics and Kharchia landraces. The Gly II transgenics were developed for glyoxalase II (osglyII) gene (GenBank accession no. AY054407) from Oryza sativa through Agrobacterium mediated method in the background of wheat cultivar PBW 621. Kharchia 65 is a salt tolerant landrace derivative developed from Kharchia local which is native to saline soils of Rajasthan. The six wheat genotypes, viz. Kharchia local, Kharchia 65, PBW 621, G-2-2, G-3-4 and G-1-13 were evaluated for growth parameters, antioxidant enzymes and contents of glutathione, ascorbic acid, malondialdehyde (MDA), H2O2, sugars, chlorophyll, carotenoid, electrolyte leakage (EL) and Na+, K+ under control and two salt treatments (150 mM and 250 mM NaCl). The activities of antioxidant enzymes, glutathione, sugar content increased in both GlyII and Kharchia genotypes as compared to PBW 621. The GlyII activity increased (77–84%) in GlyII genotypes alongwith content of reduced glutathione (GSH) to maintain redox homeostasis. Apparently, GlyII and Kharchia genotypes exhibited minimum oxidative stress due to low content of MDA, H2O2, diminished EL and thereby causing less growth reduction and maintaining high chlorophyll and carotenoid level as compared to PBW 621. In addition, Gly II transgenic material and Kharchia lines showed less Na+ accumulation, greater seedling biomass and sugar content due to its salt tolerance mechanism. We infer that GlyII activity enhances GSH which play significant role in detoxifying ROS to establish stress homeostasis. The route for generation of GSH is via ascorbate-glutathione pathway mediated by glutathione reductase. Hence, GlyII transgenics and Kharchia genotypes can diminish salt stress following above mechanism.

Supplementary Materials

    • Supplementary Material
  • Collapse
  • Expand

 

 

 

Cereal Research Communications
Language English
Size A4
Year of
Foundation
1973
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3720 (Print)
ISSN 1788-9170 (Online)