View More View Less
  • 1 AECS, P. O. Box 6091 Damascus, Syria, Damascus, Syria
Restricted access

The biotrophic Blumeria graminis (Bg) and the necrotrophic Cochliobolus sativus; (Cs) are economically important fungal pathogens of barley globally. To better understand barley mechanisms to resist these pathogens, changes in salicylic acid (SA) and its responsive genes particularly the pathogenesis related PR1, PR2, PR3 and PR5 were evaluated using qRT-PCR across four time points post infection. Data showed that SA contents significantly increased (P = 0.001) in infected plants of both resistant and susceptible genotypes 24 h post inoculation in comparison with non-infected controls. In addition, time-course tests revealed a notable contradiction in the defense-related genes expression patterns between barley and Bg and Cs interactions, showing that expression patterns of the same defense-associated genes were altered in adaptation to different pathogens. PR1 and PR2 genes were highlyactivated inresistant plants infected with the necrotrophic pathogen Cs rather than of the biotrophic one. The uniformity in barley defense response mechanisms could be in convention with the well-accepted notion that these responses are high intense in the resistant genotype. Our work provides useful information on the expected role of SA pathways in barley towards biotrophic and necroptrophic pathogens with different lifestyles.

  • Akiyama, T., Jin, S., Yoshida, M., Hoshino, T., Opassiri, R., Cairns, J.R.K. 2009. Expression of an endo-(1,3;1,4)-beta-glucanase in response to wounding, methyl jasmonate, abscisic acid and ethephon in rice seedlings. J. Plant Physiol. 166: 18141825.

    • Search Google Scholar
    • Export Citation
  • Alvarez, M.E. 2000. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol. 44: 429442.

    • Search Google Scholar
    • Export Citation
  • Arabi, M.I.E., Jawhar, M. 2004. Identification of Cochliobolus sativus (spot blotch) isolates expressing differential virulence on barley genotypes in Syria. J. Phytopathol. 152: 461464.

    • Search Google Scholar
    • Export Citation
  • Arabi, M.I.E., Jawhar, M. 2012. Expression of resistance to Blumeria graminisin barley genotypes (Hordeum vulgare L.) under field and controlled conditions. J. Plant Biol. Res. 2: 107112.

    • Search Google Scholar
    • Export Citation
  • Chaure, P., Gurr, S.J., Spanu, P. 2000. Stable transformation of Erysiphe graminis, an obligate biotrophic pathogen of barley. Nat. Biotech. 18: 205207.

    • Search Google Scholar
    • Export Citation
  • Derveaux, S., Vandesompele, J., Hellemans, J. 2010. How to do successful gene expression analysis using realtime PCR. Methods 50: 227230.

    • Search Google Scholar
    • Export Citation
  • Doehlemann, G., Wahl, R., Vranes, M., De Vries, R.P., Kämper, J., Kahmann, R. 2008. Establishment of compatibility in the Ustilagomaydis/maize pathosystem. J. Plant Physiol. 165: 2940.

    • Search Google Scholar
    • Export Citation
  • Dong, X.N. 2004. NPR1 all things considered. Curr. Opinion Plant Biol. 7: 547552.

  • Fetch, T.C., Steffenson, B.J. 1999. Rating scales for assessing infection responses of barley infected with Cochliobolus sativus. Plant Dis. 83: 231217.

    • Search Google Scholar
    • Export Citation
  • Gupta, P.K., Vasistha, N.K., Aggarwal, R., Joshi, A.K. 2018. Biology of B. sorokiniana (syn. Cochliobolus sativus) in genomics era. J. Plant Biochem. Biotechnol. 27: 123138.

    • Search Google Scholar
    • Export Citation
  • Häffner, E., Karlovsky, P., Splivallo, R., Traczewska, A., Diederichsen, E. 2014. ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum. BMC Plant Biol. 14: 7185.

    • Search Google Scholar
    • Export Citation
  • Jawhar, M., Shoaib, A., Arabi, M.I.E., Al-Daoude, A. 2017a. Changes in transcript and protein expression levels in the barley–Cochliobolus sativus interaction. Cereal Res. Comm. 45: 104113.

    • Search Google Scholar
    • Export Citation
  • Jawhar, M., Al-Shehadah, E., Shoaib, A., Orfi, M., Al-Daoude, A. 2017b. Changes in salicylic acid and gene expression levels during barley–Blumeriagraminis interaction. J. Plant Pathol. 99: 651656.

    • Search Google Scholar
    • Export Citation
  • Kogel, K.H., Langen, G. 2005. Induced disease resistance and gene expression in cereals. Cell Microb. 7: 15551564.

  • Kumar, J., Schafer, P., Huckelhoven, R., Langen, G., Baltruschat, H., Stein, E., Nagarajan, S., Kogel, H.K. 2002. Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol. Plant Pathol. 3: 185195.

    • Search Google Scholar
    • Export Citation
  • Livak, K.J., Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402408.

    • Search Google Scholar
    • Export Citation
  • Moseman, J.G., Baenziger, P.S. 1981. Genes conditioning resistance of Hordeum spontaneumto Erysiphe gramininsf. sp. Hordi. Crop Sci. 21: 229232.

    • Search Google Scholar
    • Export Citation
  • Nayanakantha, N.M.C., Rawat, S., Ali, S., Grover, A. 2016. Differential expression of defense-related genes in Sinapis alba and Brassica junceaupon the infection of Alternaria brassicae. Trop. Agri. Res. 27: 123136.

    • Search Google Scholar
    • Export Citation
  • Panstruga, R. 2003. Establishing compatibility between plants and obligate biotrophic pathogens. Curr. Opin. Plant Biol. 6: 320326.

  • Rsaliyev, A., Pahratdinova, Z., Rsaliyev, S. 2017. Characterizing the pathotype structure of barley powdery mildew and effectiveness of resistance genes to this pathogen in Kazakhstan. BMC Plant Biol. 17: 178.

    • Search Google Scholar
    • Export Citation
  • Shim, I.S., Momose, Y., Yamamoto, A., DeaWook, K., Usui, K. 2003. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. J. Plant Growth Regul. 39: 285292.

    • Search Google Scholar
    • Export Citation
  • Tayeh, C., Randoux, B., Tisserant, B., Khong, G., Jacques, P., Reignaul, P. 2015. Are ineffective defense reactions potential target for induced resistance during the compatible wheat powdery mildew interaction. Plant Physiol. Bioch. 96: 919.

    • Search Google Scholar
    • Export Citation
  • Trapp, M.A., De Souza, G.D., Filho, E.R., Boland, W., Mithofer, A. 2014. Validated method for phytohormone quantification in plants. Fron. Plant Sci. 5: 417.

    • Search Google Scholar
    • Export Citation
  • Van Loor, L.C., Rep, M., Pieterse, C.M.J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44: 135162.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q.Y., Zhang, L.Q., Song, L.L., Duan, K., Li, N., Wang, Y.X., Gao, Q.H. 2016. The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid. Hort. Res. 3: 110.

    • Search Google Scholar
    • Export Citation

Click HERE for submission guidelines

Manuscript submission: CRC Manuscript Submission

 

Senior editors

Editor(s)-in-Chief: Pauk, János

Technical Editor(s): Hajdu Buza, Kornélia

Technical Editor(s): Lantos, Csaba

Editorial Board

  • A. Aniol (Poland)
  • P. S. Baenziger (USA)
  • R.K. Behl (India)
  • F. Békés (Australia)
  • L. Bona (Hungary)
  • A. Börner (Germany)
  • R. N. Chibbar (Canada)
  • S. Gottwald (Germany)
  • A. Goyal (Canada)
  • H. Grausgruber (Austria)
  • T. Harangozó (Hungary)
  • E. Kapusi (Austria)
  • E.K. Khlestkina (Russia)
  • J. Kolmer (USA)
  • V. Korzun (Germany)
  • R. A. McIntosh (Australia)
  • Á. Mesterházy (Hungary)
  • A. Mohan (USA)
  • I. Molnár (Hungary)
  • M. Molnár-Láng (Hungary)
  • A. Pécsváradi (Hungary)
  • S. K. Rasmussen (Denmark)
  • N. Rostoks (Latvia)
  • M. Taylor (Germany)
  • J. Zhang (China)
  • X.F. Zhang (USA)

 

Senior Editorial Board

  • P. Bartos (Czech Republic)
  • H. Bürstmayr (Austria)
  • J. Johnson (USA)
  • Z. Kertész (Hungary)
  • G. Kimber (USA)
  • J. Matuz (Hungary)

Cereal Research Communications
Cereal Research Non-Profit Ltd. Company
Address: P.O. Box 391, H-6701 Szeged, Hungary
Phone: +36 62 435 235
Fax: +36 62 420 101
E-mail: crc@gk-szeged.hu

Indexing and Abstracting Services:

  • AgBiotechNet Abstracts
  • Agricola
  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Current Contents/Agriculture
  • Biology & Environmental Sciences
  • ISI Web of Science/li>
  • Science Citation Index Expanded
  • SCOPUS

 

Cereal Research Communications
Language English
Size B5
Year of
Foundation
1973
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0133-3720 (Print)
ISSN 1788-9170 (Online)