View More View Less
  • 1 Bahauddin Zakariya University, Bahadur Sub-Campus Layyah, Pakistan
  • 2 Memorial University of Newfoundland, Grenfell Campus, Canada
  • 3 The University of Haripur, 22620, Pakistan
  • 4 Bahauddin Zakariya University, Multan, Pakistan
Restricted access

The impact of trinexapac-ethyl (TE) on salinity subjected wheat plants was evaluated via pot based experiment. The treatments applied to wheat seedlings included (Ck) control (no NaCl nor TE spray), foliar spray of TE (1.95 ml L−1), only NaCl (50 mM) and NaCl+ TE (50 mM + 1.95 ml L−1). Foliar application of TE was done seven days after imposition of salinity. Growth parameters (root length, shoot length, fresh weight, and dry weight) and photosynthetic pigments content (chlorophyll a, b, a + b and a/b), water relation (water potential, osmotic potential, turgor potential and relative water contents) as well as catalase (CAT) activity exhibited marked reduction in comparison to control. In addition, an increment was noted in organic solutes content (proline, soluble protein and soluble sugar) and enzyme activity of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in stressed seedlings over control seedlings. The foliar applied TE mostly enhanced growth of salt stressed seedlings, accompanied by reinforcement in photosynthetic pigments, organic solutes, and enzyme activity (SOD, CAT, POD, and APX) in comparison to stressed seedlings. It is worthy to mention that, TE has potential to enhance salt tolerance of wheat seedlings. Thus, our findings suggest that seedling treated with TE is an effective strategy that can be used to enhance salt tolerance of wheat crop.

  • Arghavani, M., Kafi, M., Babalar, M., Naderi, R., Hoque, M.A., Murata, Y. 2012. Improvement of salt tolerance in Kentucky bluegrass by trinexapac-ethyl. Hortic. Sci. 47: 11631170.

    • Search Google Scholar
    • Export Citation
  • Arnon, D.T. 1949. Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 115.

  • Baldwin, C.M., Liu, L.B., McCarty, W.L., Bauerle, M., Toler, J.E. 2006. Effects of trinexapac-ethyl on the salinity tolerance of two bermudagrass cultivars. Hortic. Sci. 41: 808814.

    • Search Google Scholar
    • Export Citation
  • Barrs, H.D., Weatherley, P.E. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aus. J. Biol. Sci. 15: 413428.

    • Search Google Scholar
    • Export Citation
  • Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205207.

  • Bian, X., Merewitz, E., Huang, B. 2009. Effects of trinexapac-ethyl on drought responses in creeping bentgrass associated with water use and osmotic adjustment. J. Am. Soc. Hortic. Sci. 134: 505510.

    • Search Google Scholar
    • Export Citation
  • Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann. Biochem. Exp. Med. 72: 248254.

    • Search Google Scholar
    • Export Citation
  • Chance, M., Maehly, A.C. 1955. Assay of catalases and peroxidases. Methods Enzymol. 12: 764772.

  • Chen, C., Lu, S., Chen, Y., Wang, Z., Niu, Y., Guo, Z. 2009. A gamma-ray induced dwarf mutant from seeded bermudagrass and its physiological responses to drought stress. Hortic. Sci. 134: 2230.

    • Search Google Scholar
    • Export Citation
  • Elansarya, H.O., Salem, M.Z.M. 2015. Morphological and physiological responses and drought resistance enhancement of ornamental shrubs by trinexapac-ethyl application. Hortic. Sci. 18: 111.

    • Search Google Scholar
    • Export Citation
  • Ervin, E.H., Koski, A.J. 2001. Kentucky bluegrass growth responses to trinexapac-ethyl, traffic, and nitrogen. Crop Sci. 41: 18711877.

    • Search Google Scholar
    • Export Citation
  • Ervin, E.H., Ok, C.H., Fresenburg, B.S., Dunn, J.H. 2002. Trinexapac-ethyl restricts shoot growth and prolongs stand density of ‘Meyer’ zoysiagrass fairway under shade. Hortic. Sci. 37: 502505.

    • Search Google Scholar
    • Export Citation
  • Etemadi, N., Mohammadi, M.H.S., Nikbakht, A., Sabzalian, M.R., Pessarakli, M. 2015. Influence of trinexapac-ethyl in improving drought resistance of wheatgrass and tall fescue. Acta Physiol. Plant. 37: 5359.

    • Search Google Scholar
    • Export Citation
  • Fan, G., Bian, X., Li, H., Menh, Z., Liu, S. 2009. Growth responses of Kentucky bluegrass (Poapratensis L.) to trinexapac-ethyl applied in spring and autumn. Front. Agric. China 3: 186189.

    • Search Google Scholar
    • Export Citation
  • Farooq, M., Hussain, M., Wakeel, A., Siddique, K.H.M. 2015. Salt stress in maize: effects, resistance mechanisms, and management, A review. Agron. Sustain. Dev. 35: 461481.

    • Search Google Scholar
    • Export Citation
  • Foyer, C.H., Lelandais, M., Kunert, K.J. 1994. Photo-oxidative stress in plants. Physiol. Plant. 92: 696717.

  • Fricke, W., Akhiyarova, G., Veselov, D., Kudoyarova, G. 2004. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J. Exp. Bot. 55: 11151123.

    • Search Google Scholar
    • Export Citation
  • Fu, J., Huang, B. 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 45: 105114.

    • Search Google Scholar
    • Export Citation
  • Giannakoula, A., Moustakas, M., Mylona, P., Papadakis, I., Yupsanis, T. 2008. Aluminium tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline and decreased levels of lipid peroxidation and Al accumulation. J. Plant Physiol. 165: 385396

    • Search Google Scholar
    • Export Citation
  • Giannopolitis, C.N., Ries, S.K. 1977. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 59: 309314.

  • Grijalva-Contreras, R.L., Macías-Duarte, R., Martínez-Díaz, G., Robles-Contreras, F., Nuñez-Ramírez, F. 2012. Effects of trinexapac-ethyl on different wheat varieties under desert conditions of Mexico. Agric. Sci. 3: 658662.

    • Search Google Scholar
    • Export Citation
  • Guerfel, M., Baccouri, O., Boujnah, D., Chaibi, W., Zarrouk, M. 2009. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Oleaeuropaea L.) cultivars. Hortic. Sci. 119: 257263.

    • Search Google Scholar
    • Export Citation
  • Heckman, N.L., Horst, G.L., Gaussoin, R.E., Tavener, B.T. 2002. Trinexapac-ethyl influence on cell membrane thermostability of Kentucky bluegrass leaf tissue. Hortic. Sci. (Amsterdam) 92: 183186.

    • Search Google Scholar
    • Export Citation
  • Heckman, N.L., Gaussoin, R.E., Horst, G.L., Elowsky, C.G. 2005. Growth regulator effects on cellular characteristics of two turfgrass species. Int. Turfgrass Soc. Res. J. 10: 857861.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., Fry, J. 1998. Drought responses of perennial ryegrass treated with plant growth regulators. Hortic. Sci. 33: 270273.

  • Kara, M., Mishra, D. 1976. Catalase, peroxidase, poly phenoloxidase activities during since leaf senescence. Plant Physiol. 54: 315319.

    • Search Google Scholar
    • Export Citation
  • Koch, F., Zimmer, G., Monteiro, M.A., Martins, M.C., Delias, D.S., Troyjack, C., Szareski, V.J., Borges, E.G., Pedó, T., do Amarante, L., Villela, F.A., Aumonde, T.Z. 2017. Chemical composition and physiological quality of wheat seeds with the application of trinexapac-ethyl, a plant growth regulator. Aust. J. Crop Sci. 11: 15271533.

    • Search Google Scholar
    • Export Citation
  • Liu, S.Y., Dong, L., Xu, Y., Kong, J. 2014. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regul. 73: 6778.

    • Search Google Scholar
    • Export Citation
  • Matysiak, K. 2006. Influence of trinexapac-ethyl on growth and development of winter wheat. J. Protect. Res. 46: 133143.

  • McCann, S.E., Huang, B. 2007. Effects of trinexapac-ethyl foliar application on creeping bentgrass responses to combined drought and heat stress. Crop Sci. 47: 21212128.

    • Search Google Scholar
    • Export Citation
  • McCullough, P.E., Liu, H., McCarty, L.B., Whitwell, T., Toler, J.E. 2006. Growth and nutrient partitioning of ‘TifEagle’ bermudagrass as influenced by nitrogen and trinexapac-ethyl. Hortic. Sci. 41: 453458.

    • Search Google Scholar
    • Export Citation
  • Moldovan, L., Moldovan, N.I. 2004. Oxygen free radicals and redox biology of organelles, Histochem. Cell Biol. 122: 395412.

  • Munns, R. 1988. Why measure osmotic adjustment? Aust. J. Plant Physiol. 115: 717726.

  • Sakr, W.R.A. 2009. Response of paspalumturfgrass grown in sandy soil to trinexapac-ethyl and irrigation water salinity. Hort. Sci. Ornamen Plants 1: 1526.

    • Search Google Scholar
    • Export Citation
  • Sambrook, J., Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual 3rd Edition. Chapter 18: Protein interaction technologies, protocol #3: Detection of protein-protein interactions using the GST fusion protein pull-down technique. Cold Spring Harbor Laboratory Press.

    • Search Google Scholar
    • Export Citation
  • Steel, R.G.D., Torrie, J.H., Dickey, D.A. 1997. Principles and procedures of statistics:a biometric approach, 3rd Ed. McGraw Hill Book Co. Inc. New York, USA.

    • Search Google Scholar
    • Export Citation
  • Steinke, K., Stier, J.C. 2003. Nitrogen selection and growth regulator applications for improving shade turf performance. Crop Sci. 43: 13991406.

    • Search Google Scholar
    • Export Citation
  • Stier, J.C., Rogers, J.N. 2001. Trinexapac-ethyl and iron effects on supina and Kentucky bluegrasses under low irradiance. Crop Sci. 41: 457465.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., Sun, J., Li, J., Zhu, Y. 2006. Heat resistance enhanced by trinexapac-ethyl and benzyladenine combination in creeping bentgrass. Hort. Sci. 41: 17111714.

    • Search Google Scholar
    • Export Citation
  • Xu, C., Huang, B. 2011. Proteins and metabolites regulated by trinexapac-ethyl in relation to drought tolerance in Kentucky bluegrass. J. Plant Growth Regul. 31: 2537.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Ervin, E.H., Schmidt, R.E. 2003. Plant growth regulator can enhanced the recovery of Kentucky bluegrass sod from heat injury. Crop Sci. 43: 952958.

    • Search Google Scholar
    • Export Citation

Click HERE for submission guidelines

Manuscript submission: CRC Manuscript Submission

 

  • Impact Factor (2019): 0.811
  • Scimago Journal Rank (2019): 0.310
  • SJR Hirsch-Index (2019): 30
  • SJR Quartile Score (2019): Q3 Agronomy and Crop Science
  • SJR Quartile Score (2019): Q4 Genetics
  • SJR Quartile Score (2019): Q4 Physiology
  • Impact Factor (2018): 0.708
  • Scimago Journal Rank (2018): 0.321
  • SJR Hirsch-Index (2018): 30
  • SJR Quartile Score (2018): Q3 Agronomy and Crop Science
  • SJR Quartile Score (2018): Q4 Physiology

Language: English

Founded in 1973
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 48.
Indexing and Abstracting Services:

  • AgBiotechNet Abstracts
  • Agricola
  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Current Contents/Agriculture
  • Biology & Environmental Sciences
  • ISI Web of Science/li>
  • Science Citation Index Expanded
  • SCOPUS

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pauk, János

Technical Editor(s): Hajdu Buza, Kornélia

Technical Editor(s): Lantos, Csaba

Editorial Board

  • A. Aniol (Poland)
  • P. S. Baenziger (USA)
  • R.K. Behl (India)
  • F. Békés (Australia)
  • L. Bona (Hungary)
  • A. Börner (Germany)
  • R. N. Chibbar (Canada)
  • S. Gottwald (Germany)
  • A. Goyal (Canada)
  • H. Grausgruber (Austria)
  • T. Harangozó (Hungary)
  • E. Kapusi (Austria)
  • E.K. Khlestkina (Russia)
  • J. Kolmer (USA)
  • V. Korzun (Germany)
  • R. A. McIntosh (Australia)
  • Á. Mesterházy (Hungary)
  • A. Mohan (USA)
  • I. Molnár (Hungary)
  • M. Molnár-Láng (Hungary)
  • A. Pécsváradi (Hungary)
  • S. K. Rasmussen (Denmark)
  • N. Rostoks (Latvia)
  • M. Taylor (Germany)
  • J. Zhang (China)
  • X.F. Zhang (USA)

 

Senior Editorial Board

  • P. Bartos (Czech Republic)
  • H. Bürstmayr (Austria)
  • J. Johnson (USA)
  • Z. Kertész (Hungary)
  • G. Kimber (USA)
  • J. Matuz (Hungary)

Cereal Research Communications
Cereal Research Non-Profit Ltd. Company
Address: P.O. Box 391, H-6701 Szeged, Hungary
Phone: +36 62 435 235
Fax: +36 62 420 101
E-mail: crc@gk-szeged.hu