Wild barley, Hordeum marinum subsp. gussoneanum (2n = 28) is a valuable source of genes that determine resistance to abiotic stresses. These resistance traits might be transferred to wheat due to the crossability of wild barley with bread wheat. The availability of reliable and rapid methods for the identification of H. marinum subsp. gussoneanum chromatin in a wheat background would facilitate the development of introgression wheat genotypes. For this purpose, we evaluated the applicability of eighty-seven H. vulgare EST markers for studying bread wheat – H. marinum subsp. gussoneanum substitution and addition lines. Of all of the markers studied, forty-three (49%) were amplified in H. marinum ssp. gussoneanum and wheat introgression lines. The identification of wild barley chromosomes using EST markers confirmed the GISH and C-banding data. Thus, it was established that the H. vulgare EST markers can be successfully used to identify the chromosomes of the H. marinum subsp. gussoneanum in introgression lines of wheat.
Badaeva, E.D., Badaev, N.S., Gill, B.S., Filatenko, A.A. 1994. Intraspecific karyotype divergence in Triticum araraticum. Plant Syst. Evol. 192: 117–145.
Blattner, F.R. 2009. Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hordeum (Poaceae: Triticeae). Breeding Sci. 59: 471–480.
Bothmer, R., von Jacobsen, N., Baden, C., Jorgensen, R.B., Linde-Laursen, I. 1991. An ecogeographical study of the genus Hordeum. In: 2nd ed. IBPGR, Rome, p. 127.
Bothmer, R. von, Komatsuda, T. 2011. Barley original and related species. In: Barley: Production, Improvement, and Uses. Ed. By Steven E. Ullrich, Wiley-Blackwell, pp. 14–62.
Boustani, A., Fatehi F., Azizinezhad, R. 2017. The Proteome response of “Hordeum marinum” to long-term salinity stress. Cereal Res. Commun. 45(3): 401–410.
Carmona, A., Friero, E., Bustos, A. de, Jouve, N., Cuadrado, A. 2013. The evolutionary history of sea barley (Hordeum marinum) revealed by comparative physical mapping of repetitive DNA. Ann. Bot. 112: 1845–1855.
Castillo, A., Budak, H., Varshney, R.K., Dorado, G., Graner, A., Hernández, P. 2008. Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol. 8(1): 97–10.
Edwards, K., Johnstone, C., Thompson, C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR Analysis. Nucl. Acids Res 19: 1349.
Fang, Y., Yuan, J., Wang, Z., Wang, H., Xiao, J., Yang, Z. 2014. Development of T. aestivum L. – H. californicum alien chromosome lines and assignment of homoeologous groups of Hordeum californicum chromosomes. J. Genet. Genomics 41: 439–477.
Garthwaite, A.J., von Bothmer, R., Colmer, T.D. 2005. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. J. Exp. Bot. 56(419): 2365–2378.
Gradzielewska, A. 2006. The genus Dasypyrum – part 2. Dasypyrum villosum – a wild species used in wheat improvement. Euphytica 152: 441–454.
Gill, B.S., Friebe, B.R., White, F.F. 2011. Alien introgressions represent a rich source of genes for crop improvement. Proc. Natl. Acad. Sci. USA 108(19): 7657–7658.
Hagras, A.A., Kishii, M., Sato, K., Tanaka, H., Tsujimoto, H. 2005. Extended application of barley EST markers for the analysis of alien chromosomes added to wheat genetic background. Breed Sci. 55: 335–341.
Islam, S., Malik, A.I., Islam, A.K.M.R., Colmer, T.D. 2007. Salt tolerance in a Hordeum marinum – Triticum aestivum amphiploid, and its parents. J. Exp. Bot. 58: 1219–1229.
Kobylyanskii, V.D. 1967. Biological characters of wild barley species in relation to aims of breeding. Biolog. Zh. Armenia 20: 41–51.
Komatsuda, T., Salomon, B., Bryngelsson, T., Bothmer, R.V. 2001. Phylogenetic analysis of Hordeum marinum Huds. based on nucleotide sequences linked to the vrs1 locus. Plant Syst. Evol. 227: 137–144.
Malik, A.I., English, J.P., Colmer, T.D. 2009. Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined. Ann. Bot. 103(2): 237–248.
Martín, A., Álvarez, J.B., Martín, L.M., Barro, F., Ballesteros, J. 1999. The development of tritordeum: a novel cereal for food processing. J. Cereal Sci. 30: 85–95.
Miller, T.E., Reader, S.M., Chapman, V. 1982. The addition of Hordeum chilense chromosomes to wheat. In: Broertjes, C. (ed.) Proc Int Symp Eucarpia. Induced Variability Plant Breed. Pudoc, Wageningen, pp. 79–81.
Molnár-Láng, M., Linc, G., Szakács, É. 2014. Wheat-barley hybridization: the last 40 years. Euphytica 195: 315–329.
Nasuda, S., Kikkawa, Y., Ashida, T., Islam, A.K.M.R., Sato, K., Endo, T.R. 2005. Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet. Syst. 80: 357–366.
Pershina, L.A., Numerova, O.M., Belova, L.I., Devyatkina, E.P., Shumny, V.K. 1988. Fertility in barley × wheat hybrids H. geniculatum All. × T. aestivum L., their regenerants and hybrid progeny of backcrosses to T. aestivum. Cereal Res. Commun. 16: 157–163.
Pershina, L.A., Devyatkina, E.P., Belova, L.I., Trubacheeva, N.V., Arbuzova, V.S., Kravtsova, L.A. 2009. Features of alloplasmic wheat-barley substitution and addition lines (Hordeum marinum subsp. gussoneanum) – Triticum aestivum. Russ. J. Genet. 45: 1223–1229.
Ren, T., Yang, Z., Yan, B., Ren, Z. 2009. Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica 169(2): 207–213.
Rubiales, D., Moral, A. 2011. Resistance of Hordeum chilense against loose smuts of wheat and barley (Ustilago tritici and U. nuda) and its expression in amphiploids with wheat. Plant Breeding 130(1): 101–103.
Schubert, I., Fransz, P.F., Fuchs, J., Jing, J.H. 2001. Chromosome painting in plants. Methods Cell Sci. 23: 57–69.
Taketa, S., Takeda, K. 2001. Production and characterization of a complete set of wheat-wild barley (Hordeum vulgare ssp. spontaneum) chromosome addition lines. Breed Sci. 51: 199–206.
Trubacheeva, N.V, Badaeva, E.D., Adonina, I.G., Belova, L.I., Devyatkina, E.P., Pershina, L.A. 2008. Construction and molecular and cytogenetic analyses of euploid (2n = 42) and telocentric addition (2n = 42 + 2t) alloplasmic lines (Hordeum marinum subsp. gussoneanum) – Triticum aestivum. Russ. J. Genet. 44: 67–73.
Trubacheeva, N.V., Efremova, T.T., Badaeva, E.D., Kravtsova, L.A., Belova, L.I., Devyatkina, E.P., Pershina, L.A. 2009. Production of alloplasmic and euplasmic wheat-barley ditelosomic substitution lines 7H1Lmar(7D) and analysis of the 18S/5S mitochondrial repeat in these lines. Russ. J. Genet. 45: 1438–1443.