View More View Less
  • 1 University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
Restricted access

The effect of Azospirillum brasilense Sp7 (Sp7) on maize (Zea mays, Mill cv. B73) seedlings was compared when using two common carriers to deliver Sp7 to the seed: phosphate buffered saline (PBS) and magnesium sulfate (MgSO4). Seedling height, leaf chlorophyll levels, and root growth parameters were analyzed with WinRHIZO® at an early vegetative stage of plant development. Scanning and transmission electron microscope (SEM & TEM) analysis showed that carrier components do not effect bacterial binding to plant roots. MgSO4 + Sp7 caused a significant increase in the abundance of thick lateral roots, but stunted plant height, compared to other treatment groups, while relative chlorophyll contents (SPAD) significantly increased in seedlings inoculated with PBS + Sp7, revealing that the two inoculation carriers differentially affect the Sp7-associated plants.

  • Alström, S. 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J. Gen. Appl. Microbiol. 37: 495501.

    • Search Google Scholar
    • Export Citation
  • Ashraf, M., Hasnain, S., Berge, O., Mahmood, T. 2004. Inoculating wheat seedlings with exopolysaccharideproducing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soil. 40: 157162.

    • Search Google Scholar
    • Export Citation
  • Barassi, C.A., Sueldo, R.J., Creus, C.M., Carrozzi, L.E., Casanovas, E.M., Pereyra, M.A. 2007. Azospirillum spp., a dynamic soil bacterium favourable to vegetable crop production. Dyn. Soil Dyn. Plant 1: 6882.

    • Search Google Scholar
    • Export Citation
  • Bashan, Y., Levanony, H. 1985. An improved selection technique and medium for the isolation and enumeration of Azospirillum brasilense. Can. J. Microbiol. 31: 947952.

    • Search Google Scholar
    • Export Citation
  • Bashan, Y., Holguin, G., Lifshitz, R. 1993. Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick, B.R., Thompson, J.E. (eds), Methods in Plant Molecular Biology and Biotechnology. CRC Press, Boca Raton, FL, USA.

    • Search Google Scholar
    • Export Citation
  • Bashan, Y., Holguin, G. 1996. Nitrogen-fixation by Azospirillum brasilense cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphilococus sp.). Soil Biol. Biochem. 28(12): 16511660.

    • Search Google Scholar
    • Export Citation
  • Bashan, Y., Holguin, G. 1997. Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can. J. Microbiol. 43: 103121.

    • Search Google Scholar
    • Export Citation
  • Bashan, Y., Bustillos, J.J., Leyva, L.A., Hernandez, J.P., Bacilio, M. 2006. Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol. Fertil. Soils 42(4): 279285.

    • Search Google Scholar
    • Export Citation
  • Borisov, I.V., Schelud'ko, A.V., Petrova, L.P., Katsy, E.I. 2009. Changes in Azospirillum brasilense motility and the effect of wheat seedling exudates. Microbiol. Res. 164: 578587.

    • Search Google Scholar
    • Export Citation
  • Casanovas, E.M., Barassi, C.A., Sueldo, R.J. 2002. Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res. Commun. 30: 343350.

    • Search Google Scholar
    • Export Citation
  • Casanovas, E.M., Barassi, C.A., Andrade, F.H., Sueldo, R.J. 2003. Azospirillum inoculated maize plant responses to irrigation restraints imposed during flowering. Cereal Res. Commun. 31: 395402.

    • Search Google Scholar
    • Export Citation
  • Cohen, A.C., Travaglia, C.N., Bottini, R., Piccoli, P.N. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87: 455462.

    • Search Google Scholar
    • Export Citation
  • Correa, O.S., Romero, A.M., Montecchia, M.S., Soria, M.A. 2007. Tomato genotype and Azospirillum inoculation modulate the changes in bacterial communities associated with roots and leaves. J. Appl. Microbiol. 102: 781786.

    • Search Google Scholar
    • Export Citation
  • Creus, C.M., Sueldo, R.J., Barassi, C.A. 1997. Shoot growth and water status in Azospirillum-inoculated wheat seedling grown under osmotic and salt stresses. Plant Physiol. Biochem. 35(12): 939944.

    • Search Google Scholar
    • Export Citation
  • Day, D.M., Döbereiner, J. 1976. Physiological aspects of N2-fixation by a Spirillum from Digitaria roots. Soil Biol. Biochem. 8: 4550.

    • Search Google Scholar
    • Export Citation
  • Fukami, J., Nogueira, M.A., Araujo, R.S., Hungria, M. 2016. Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6(3).

    • Search Google Scholar
    • Export Citation
  • Gafny, R., Okon, Y., Kapulnik, Y. 1985. Adsorption of Azospirillum brasilense to corn roots. Soil Biol. Biochem. 18(1): 6975.

  • Guerrero-Molina, M.F., Winik, B.C., Pedraza, R.O. 2012. More than rhizosphere colonization of strawberry plants by Azospirillum brasilense. Appl. Soil Ecol. 61: 205212.

    • Search Google Scholar
    • Export Citation
  • Guo, W.L., Nazim, H., Liang, Z., Yang, D. 2016. Magnesium deficiency in plants: an urgent problem. Crop J. 4: 8391.

  • Hernández-González, O., Yoisura, S.V., Larqué-Saavedra, A. 2010. Photosynthesis, transpiration, stomatal conductance, chlorophyll fluorescence and chlorophyll content in Brosimum alicastrum. Bothalia Journal 44(6): 165176.

    • Search Google Scholar
    • Export Citation
  • Khalid, M., Bilal, M., Hassani, D., Iqbal, H.M.N., Wang, H., Huang, D. 2017. Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Bot. Stud. 58(1): 5.

    • Search Google Scholar
    • Export Citation
  • Kumar, A.S., Lakshmanan, V., Caplan, J.L., Powell, D., Czymmek, K.J., Levia, D.F., Bais, H.P. 2012. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J. 72: 694706.

    • Search Google Scholar
    • Export Citation
  • Lugtenberg, B., Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Ann. Rev. Microbiol. 63: 541556.

  • Mangmang, J.S., Deaker, R., Rogers, I. 2015. Early seedling growth response of lettuce, tomato and cucumber to Azospirillum brasilense inoculated by soaking and drenching. J. Hortic. Sci. 42(1): 3746.

    • Search Google Scholar
    • Export Citation
  • Maurhofer, M., Hase, C., Meuwly, P., Métraux, J.P., Défago, G. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Phytopathology 84: 139146.

    • Search Google Scholar
    • Export Citation
  • Mugilan, I., Gayathri, P., Elumalai, E.K., Elango, R. 2011. Studies on improve survivability and shelf life of carrier using liquid inoculation of Pseudomonas striata. Int. J. Pharm. Bio. 2(4): 12711275.

    • Search Google Scholar
    • Export Citation
  • Okon, Y., Albrecht, S.L., Burris, R.H. 1977. Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl. Environ. Microbiol. 33: 8588.

    • Search Google Scholar
    • Export Citation
  • Peng, W.T., Zhang, L.D., Zhou, Z., Fu, C., Chen, Z.C., Liao, H. 2018. Magnesium promotes root nodulation through facilitation of carbohydrate allocation in soybean. Physiol. Plant 163(3): 372385.

    • Search Google Scholar
    • Export Citation
  • Perrig, D., Boiero, M.L., Masciarelli, O.A., Penna, C., Ruiz, O.A., Cassán, F.D., Luna, M.V. 2007. Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl. Microbiol. Biotechnol. 75: 11431150.

    • Search Google Scholar
    • Export Citation
  • Reddy, C.A., Saravan, R.S. 2013. Polymicrobial multi-functional approach for enhancement of crop productivity. Adv. Appl. Microbiol. 82: 53113.

    • Search Google Scholar
    • Export Citation
  • Rivera, D., Obando, M., Barbosa, H., Rojas Tapias, D., Bonilla, R. 2014. Evaluation of polymers for the liquid rhizobial formulation and their influence in the Rhizobium-Cowpea interaction. Univ. Sci. 19(3): 265275.

    • Search Google Scholar
    • Export Citation
  • Subramanian, S., Souleimanov, A., Smith, D.L. 2016. Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana. Front. Plant Sci. 7: 1314.

    • Search Google Scholar
    • Export Citation
  • Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M.N., Métraux, J.P., Mauch-Mani, B. 2005. Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17: 987999.

    • Search Google Scholar
    • Export Citation
  • Van Peer, R., Niemann, G.J., Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81: 728734.

    • Search Google Scholar
    • Export Citation
  • Verhagen, B.W.M., Glazebrook, J., Zhu, T., Chang, H.-S., Van Loon, L.C., Pieterse, C.M.J. 2004. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol. Plant Microbe Interact. 17: 895908.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.Q., Ohara, Y., Nakayashiki, H., Tosa, Y., Mayama, S. 2005. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol. Plant Microbe Interact. 18: 385396.

    • Search Google Scholar
    • Export Citation

Click HERE for submission guidelines

Manuscript submission: CRC Manuscript Submission

 

  • Impact Factor (2019): 0.811
  • Scimago Journal Rank (2019): 0.310
  • SJR Hirsch-Index (2019): 30
  • SJR Quartile Score (2019): Q3 Agronomy and Crop Science
  • SJR Quartile Score (2019): Q4 Genetics
  • SJR Quartile Score (2019): Q4 Physiology
  • Impact Factor (2018): 0.708
  • Scimago Journal Rank (2018): 0.321
  • SJR Hirsch-Index (2018): 30
  • SJR Quartile Score (2018): Q3 Agronomy and Crop Science
  • SJR Quartile Score (2018): Q4 Physiology

Language: English

Founded in 1973
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 48.
Indexing and Abstracting Services:

  • AgBiotechNet Abstracts
  • Agricola
  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Current Contents/Agriculture
  • Biology & Environmental Sciences
  • ISI Web of Science/li>
  • Science Citation Index Expanded
  • SCOPUS

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pauk, János

Technical Editor(s): Hajdu Buza, Kornélia

Technical Editor(s): Lantos, Csaba

Editorial Board

  • A. Aniol (Poland)
  • P. S. Baenziger (USA)
  • R.K. Behl (India)
  • F. Békés (Australia)
  • L. Bona (Hungary)
  • A. Börner (Germany)
  • R. N. Chibbar (Canada)
  • S. Gottwald (Germany)
  • A. Goyal (Canada)
  • H. Grausgruber (Austria)
  • T. Harangozó (Hungary)
  • E. Kapusi (Austria)
  • E.K. Khlestkina (Russia)
  • J. Kolmer (USA)
  • V. Korzun (Germany)
  • R. A. McIntosh (Australia)
  • Á. Mesterházy (Hungary)
  • A. Mohan (USA)
  • I. Molnár (Hungary)
  • M. Molnár-Láng (Hungary)
  • A. Pécsváradi (Hungary)
  • S. K. Rasmussen (Denmark)
  • N. Rostoks (Latvia)
  • M. Taylor (Germany)
  • J. Zhang (China)
  • X.F. Zhang (USA)

 

Senior Editorial Board

  • P. Bartos (Czech Republic)
  • H. Bürstmayr (Austria)
  • J. Johnson (USA)
  • Z. Kertész (Hungary)
  • G. Kimber (USA)
  • J. Matuz (Hungary)

Cereal Research Communications
Cereal Research Non-Profit Ltd. Company
Address: P.O. Box 391, H-6701 Szeged, Hungary
Phone: +36 62 435 235
Fax: +36 62 420 101
E-mail: crc@gk-szeged.hu