This paper is concerned with the following question: to what extent does neural machine translation (NMT) – a relatively new approach to machine translation (MT), which can draw on richer contextual information than previous MT architectures – perform explicitation shifts in translation and how are these shifts realised in linguistic terms? In order to answer this question, the paper attempts to identify instances of explicitation in the machine-translated version of a research report on carbon dioxide capture and storage. The machine-translated text was created using the publicly available generic NMT system DeepL. The human translation of the research report was analysed in a prior research project for instances of explicitation and implicitation (Krüger 2015). After a brief quantitative di scussion of the frequency and distribution of explicitation shifts identified in the DeepL output as compared to the shifts identified in the human translation of the research report, the paper analyses in detail several examples in which DeepL performed explicitation shifts of various kinds. The quantitative and qualitative analyses are intended to yield a tentative picture of the capacity of state-of-the art neural machine translation systems to perform explicitation shifts in translation. As explicitation is understood in this article as an indicator of translational text–context interaction, the explicitation performance of NMT can – to some extent – be taken to be indicative of the “contextual awareness” of this new MT architecture.
Ahrenberg, L. 2017. Comparing Machine Translation and Human Translation: A Case Study. In: Temnikova, I., Orasan, C., Corpas Pastor, G., Vogel, S. (eds) Proceedings of the Workshop Human-Informed Translation and Interpreting Technology. Association for Computational Linguistics. 21–28.
Baumgarten, N., Meyer, B., Özçetin, D. 2008. Explicitness in Translation and Interpreting. A Critical Review and Some Empirical Evidence (of an Elusive Concept). Across Languages and Cultures Vol. 9. No. 2. 177–203.
Becher, V. 2011. Explicitation and implicitation in translation. A corpus-based study of English– German and German–English translations of business texts. PhD thesis, Department of Applied Linguistics, University of Hamburg.
Beyer, A., Burchardt, A. 2017. Where do matters stand on commercial mt after the advent of Neural Technology? Presentation at the Annual Meeting of the German Association for Technical Documentation (tekom), 25 October 2017.
Blum-Kulka, S. 1986. Shifts of Cohesion and Coherence in Translation. In: House, J., Blum-Kulka S. (eds) Interlingual and Intercultural Communication. Discourse and Cognition in Translation and Second Language Acquisition Studies. Tübingen: Narr. 17–35.
De Metsenaere, H., Vandepitte, S. 2017. Towards a Theoretical Foundation for Explicitation and Implicitation. trans-kom Vol. 10. No. 3. 385–419.
Forcada, M. L. 2017. Making Sense of Neural Machine Translation. Translation Spaces Vol. 6. No. 2. 291–309.
Hassan, H., Aue, A., Chen, C., Chowdhary, V., Clark, J., Federmann, C., Huang, X., JunczysDowmunt, M., Lewis, W., Li, M., Liu, S., Liu, T.-Y., Luo, R., Menezes, A., Qin, T., Seide, F., Tan, X., Tian, F., Wu, L., Wu, S., Xia, Y., Zhang, D., Zhang, Z., Zhou, M. 2018. Achieving Human Parity on Automatic Chinese to English News Translation. arXiv:1803.05567v2 [cs. L].
Hoek, J., Evers-Vermeul, J., Sanders, T. J. M. 2015. The Role of Expectedness in the Implicitation and Explicitation of Discourse Relations. In: Webber, B., Carpuat, M., Popescu-Belis, A., Hardmeier, C. (eds) Proceedings of the Second Workshop on Discourse in Machine Translation. Association for Computational Linguistics. 41–46.
Klaudy, K. 2009. Explicitation. In: Baker, M., Saldanha, G. (eds) Routledge Encyclopedia of Translation Studies. 2nd edition. London: Routledge. 104–108.
Koehn, P. 2010. Statistical Machine Translation. New York, NY: Cambridge University Press.
Koehn, P. 2017. Statistical Machine Translation. Draft of Chapter 13: Neural Machine Translation. 2nd Public Draft. arXiv. https://arxiv.org/pdf/1709.07809.pdf.
Krein-Kühle, M. 2002. Cohesion and Coherence in Technical Translation: The Case of Demonstrative Reference. In: Van Vaerenbergh, L. (ed.) Linguistics and Translation Studies. Translation Studies and Linguistics (Linguistica Antverpiensia). Antwerp: Hoger Instituut voor Vertalers en Tolken. 41–53.
Krüger, R. 2015. The Interface between Scientific and Technical Translation Studies and Cognitive Linguistics. With Particular Emphasis on Explicitation and Implicitation as Indicators of Translational Text-Context Interaction. Berlin: Frank & Timme.
Krüger, R. 2020. Propositional Opaqueness as a Potential Problem for Neural Machine Translation. In: Ahrens, B., Beaton-Thome, M., Krein-Kühle, M., Krüger, R., Link, L., Wienen, U. (eds) Interdependence and Innovation in Translation, Interpreting and Specialised Communication. Berlin: Frank & Timme. 261–278.
Langacker, R. W. 1987. Foundations of Cognitive Grammar. Vol. 1. Theoretical Prerequisites. Stanford: University Press.
Langacker, R. W. 2008. Cognitive Grammar. A Basic Introduction. New York, NY: Oxford University Press.
Laviosa, S. 2002. Corpus-Based Translation Studies. Theory, Findings, Applications. Amsterdam: Rodopi.
Läubli, S., Senrich, R., Volk, M. 2018. Has Machine Translation Achieved Human Parity? A Case for Document-level Evaluation. arXiv:1808.07048v1 [cs.CL].
Li, J. J., Carpuat, M., Nenkova, A. 2014. Assessing the Discourse Factors That Influence the Quality of Machine Translation. In: Toutanova, K., Wu, H. (eds) Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers). Association for Computational Linguistics. 283–288.
Reiss, K., Vermeer, H. J. 1991. Grundlegung einer allgemeinen Translationstheorie. 2nd edition. Tübingen: Niemeyer.
Schmitt, P. A. 1999. Translation und Technik. Tübingen: Stauffenburg.
Schreiber, M. 1993. Übersetzung und Bearbeitung. Zur Differenzierung und Abgrenzung des Übersetzungsbegriffs. Tübingen: Narr.
Slator. 2018. Slator 2018 Neural Machine Translation Report. Slator.com.
Smith, K. S. 2017. On Integrating Discourse in Machine Translation. In: Webber, B., PopescuBelis, A., Tiedemann, J. (eds) Proceedings of the Third Workshop on Discourse in Machine Translation. Association for Computational Linguistics. 110–121.
Toral, A., Castilho, S., Hu, K., Way, A. 2018. Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation arXiv:1808.10432v1 [cs.CL].
Wuebker, J., Green, S., DeNero, J., Hasan, S., Luong, M.-T. 2016. Models and Inference for Prefix-Constrained Machine Translation. In: Erk, K., Smith, N. A. (eds) Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics. 66–75.
Zufferey, S., Popescu-Belis, A. 2017. Discourse Connectives. Theoretical Models and Empirical Validations in Humans and Computers. In: Blochowiak, J., Grisot, C., Durrleman, S., Laenz-linger, C. (eds) Formal Models in the Study of Language. Applications in Interdisciplinary Contexts. Cham: Springer. 375–390.