Authors:
Xiangling Wang School of Foreign Languages, Hunan University, Changsha, China

Search for other papers by Xiangling Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8889-7569
,
Tingting Wang School of Foreign Languages, Hunan University, Changsha, China

Search for other papers by Tingting Wang in
Current site
Google Scholar
PubMed
Close
,
Ricardo Muñoz Martín MC2 Lab, University of Bologna, Bologna, Italy

Search for other papers by Ricardo Muñoz Martín in
Current site
Google Scholar
PubMed
Close
, and
Yanfang Jia Research Institute of Languages and Cultures, Hunan Normal University, Changsha, China

Search for other papers by Yanfang Jia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This is a report on an empirical study on the usability for translation trainees of neural machine translation systems when post-editing (mtpe). Sixty Chinese translation trainees completed a questionnaire on their perceptions of mtpe's usability. Fifty of them later performed both a post-editing task and a regular translation task, designed to examine mtpe's usability by comparing their performance in terms of text processing speed, effort, and translation quality. Contrasting data collected by the questionnaire, keylogging, eyetracking and retrospective reports we found that, compared with regular, unaided translation, mtpe's usefulness in performance was remarkable: (1) it increased translation trainees' text processing speed and also improved their translation quality; (2) mtpe's ease of use in performance was partly proved in that it significantly reduced informants' effort as measured by (a) fixation duration and fixation counts; (b) total task time; and (c) the number of insertion keystrokes and total keystrokes. However, (3) translation trainees generally perceived mtpe to be useful to increase productivity, but they were skeptical about its use to improve quality. They were neutral towards the ease of use of mtpe.

  • Bahdanau, D., Cho, K. & Bengio, Y. 2014. Neural Machine Translation by Jointly Learning to Align and Translate. https://arxiv.org/abs/1409.0473.

    • Search Google Scholar
    • Export Citation
  • Bentler, P. M. & Chou, C. P. 1987. Practical issues in structural modeling. Sociological Methods & Research Vol. 16. No. 1. 78117.

  • Briggs, N. 2018. Neural Machine Translation Tools in the Language Learning Classroom: Students’ Use, Perceptions, and Analyses. The JALT CALL Journal Vol. 14. No. 1. 324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadwell, P., Castilho, S. & O'Brien, S. 2016. Human Factors in Machine Translation and Post-editing among Institutional Translators. Translation Spaces Vol. 5. No. 2. 222243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadwell, P., O'Brien, S. & Teixeira, C. 2018. Resistance and Accommodation: Factors for the (non-)Adoption of Machine Translation among Professional Translators. Perspectives . Vol. 26. No. 3. 301321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carl, M. 2012. Translog-II: A Program for Recording User Activity Data for Empirical Reading and Writing Research. Paper presented at the Eight International Conference on Language Resources and Evaluation (Istanbul, Turkey, May 23–25).

    • Search Google Scholar
    • Export Citation
  • Carl, M. Dragsted, B., Elming, J., Hardt, D. & Jakobsen, A. L. 2011. The Process of Post-editing: A Pilot Study. In: Sharp, B., Zock, M., Carl, M. & Lykke Jakobsen, A. (eds) Human-Machine Interaction in Translation: Proceedings of the 8th International NLPCS Workshop. Frederiksberg: Samfundslitteratur. 131142.

    • Search Google Scholar
    • Export Citation
  • Carl, M., Dragsted, B., & Jakobsen, A. L. 2011. A Taxonomy of Human Translation Styles, Translation Journal , Vol. 16, No. 2.

  • Carl, M., Gutermuth, S. & Hansen-Schirra, S. 2015. Post-editing Machine Translation: Efficiency, Strategies and Revision Processes in Professional Translation Settings. In: Ferreira, A. & Schwieter, J. W. (eds). Psycholinguistic and Cognitive Inquiries into Translation and Interpreting. Amsterdam: John Benjamins. 145175.

    • Search Google Scholar
    • Export Citation
  • Carl, M., Schaeffer, M. & Bangalore, S. 2016. The CRITT Translation Process Research Database. In: Carl, M., Bangalore, S. & Schaeffer, M. (eds) 2016. New Directions in Empirical Translation Process Research: Exploring the CRITT TPR-DB. New York: Springer. 1354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castilho, S. & O'Brien, S. 2017. Acceptability of Machine-translated Content: A Multi-language Evaluation by Translators and End-users. Linguistica Antverpiensia, New Series: Themes in Translation Studies Vol. 16, 120136.

    • Search Google Scholar
    • Export Citation
  • Da Silva, I. Alves, F., Schmaltz, M., Pagano, A., Wong, D., Chao, L., Leal, A. L. V. Quaresma, P., Garcia, C. and da Silva, G. E. 2017. Translation, Post-editing and Directionality: A Study of Effort in the Chinese-Portuguese Language Pair. In: Jakobsen, A. L. & Mesa Lao, B. (eds) Translation in Transition: Between Cognition, Computing and Technology. Amsterdam: John Benjamins. 107134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Da Silva, I. L., Schmaltz, M., Alves, F., Pagano, A., Wong, D., Chao, L., Leal, A. L. V. Quaresma, P. & Garcia, C. 2015. Translating and Post-editing in the Chinese-Portuguese Language pair: Insights from an Exploratory Study of Key Logging and Eye Tracking. Translation Spaces Vol. 4. No. 1. 145169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daems, J., Vandepitte, S., Hartsuiker, R. J. & Macken, L. 2017. Translation Methods and Experience: A Comparative Analysis of Human Translation and Post-editing with Students and Professional Translators. Meta Vol. 62. No. 2. 245270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, F. D. 1989. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly Vol. 13, 319340.

  • De Sousa, S. C., Aziz, W. & Specia, L. 2011. Assessing the Post-editing Effort for Automatic and Semi-automatic Translations of DVD Subtitles. In Angelova. G., Bontcheva, K., Mitkov, R. & Nicolov, N. (eds) Proceedings of the Recent Advances in Natural Language Processing Conference. Hissar, Bulgaria. 97103.

    • Search Google Scholar
    • Export Citation
  • Depraetere, I., de Sutter, N. & Tezcan, A. 2014. Post-edited Quality, Post-editing Behavior and Human Evaluation: A Case Study. In: O'Brien, S., Balling, L. W., Carl, M., Simard, M. & Specia, L. (eds). Post-editing of Machine Translation: Processes and Applications. Newcastle: Cambridge Scholars Publishing. 78108.

    • Search Google Scholar
    • Export Citation
  • Fiederer, R. & O’Brien, S. 2009. Quality and Machine Translation: A Realistic Objective? The Journal of Specialised Translation Vol. 11, 5274.

    • Search Google Scholar
    • Export Citation
  • Garcia, I. 2010. Is Machine Translation Ready Yet? Target Vol. 22. No. 1. 721.

  • Garcia, I. 2011. Translating by Post-editing: Is it the Way Forward? Machine Translation Vol. 25. 217237.

  • Germann, U. 2008. Yawat: Yet Another Word Alignment Tool. In Proceedings of the ACL-08: HLT Demo Session (Companion Volume). 2023.

  • Green, S., Heer, J. & Manning, C. 2013. The Efficacy of Human Post-editing for Language Translation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Association for Computing Machinery. 439448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerberof, A. 2009. Productivity and Quality in MT Post-editing. In MT Summit XII-Workshop: Beyond Translation Memories: New Tools for Translators MT. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.5398&rep=rep1&type=pdf.

    • Search Google Scholar
    • Export Citation
  • Guerberof, A. 2013. What do Professional Translators Think about Post-editing? The Journal of Specialised Translation Vol. 19. 7595.

  • Hartson, H. R. 1998. Human–Computer Interaction: Interdisciplinary Roots and Trends. Journal of Systems and Software Vol. 43. No. 2. 103118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hvelplund, K. T. H. 2011. Allocation of Cognitive Resources in Translation: An Eye-tracking and Key-logging Study .Copenhagen: Copenhagen Business School.

    • Search Google Scholar
    • Export Citation
  • Hvelplund, K. T. 2014. Eye Tracking and the Translation Process: Reflections on the Analysis and Interpretation of Eye-tracking Data. In: Muñoz, R. (ed.) Minding Translation. MonTI Special Issue 1. 201223.

    • Search Google Scholar
    • Export Citation
  • ISO 9241-11 (1998. Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs), Part 11: Guidance on Usability. Geneva: International Organization for Standardization.

    • Search Google Scholar
    • Export Citation
  • Jia, Y., Carl, M. & Wang, X. 2019a. Post-editing Neural Machine Translation versus Phrase-Based Machine Translation for English–Chinese. Machine Translation Vol. 33. No. 1–2. 929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, Y., Carl, M. & Wang, X. 2019b. How Does the Post-editing of Neural Machine Translation Compare with From-scratch Translation? A Product and Process study. The Journal of Specialised Translation Vol. 31. 6086.

    • Search Google Scholar
    • Export Citation
  • Junczys-Dowmunt, M., Dwojak, T. & Hoang, H. 2016. Is Neural Machine Translation Ready for Deployment? A Case Study on 30 Translation Directions. https://arxiv.org/abs/1610.01108.

    • Search Google Scholar
    • Export Citation
  • Just, A. & Carpenter, P. 1980. A Theory of Reading: From Eye Fixation to Comprehension. Psychological Review Vol. 4, 329354.

  • Koglin, A. 2015. An Empirical Investigation of Cognitive Effort Required to Post-edit Machine Translated Metaphors Compared to the Translation of Metaphors. Translation & Interpreting Vol. 7. 126141.

    • Search Google Scholar
    • Export Citation
  • Koponen, M. 2016. Is Machine Translation Post-editing Worth the Effort? A Survey of Research into Post-editing and Effort. The Journal of Specialised Translation Vol. 25, 131148.

    • Search Google Scholar
    • Export Citation
  • Krings, H. P. 2001. Repairing Texts: Empirical Investigations of Machine Translation Postediting Processes. Kent, OH: Kent State University Press.

    • Search Google Scholar
    • Export Citation
  • Läubli, S. Fishel, M., Massey, G., Ehrensberger-Dow, M.& Volk, M. 2013. Assessing Post-editing Efficiency in a Realistic Translation Environment. In: O'Brien, S., Simard, M. & Specia, L. (eds). Proceedings of MT Summit XIV Workshop on Post-editing Technology and Practice, Nice. 8391.

    • Search Google Scholar
    • Export Citation
  • Lee, J. & Liao, P. 2011. A Comparative Study of Human Translation and Machine Translation with Post-editing. Compilation and Translation Review Vol. 4. No. 2. 105149.

    • Search Google Scholar
    • Export Citation
  • Lu, Z. & Sun, J. 2018. An Eye-tracking Study of Cognitive Processing in Human Translation and Post-editing. Foreign Language Teaching and Research Vol. 50. No. 5. 760769.

    • Search Google Scholar
    • Export Citation
  • Lund, A. M. 2001. Measuring Usability with the USE Questionnaire. Usability Interface Vol. 8. No. 2. 36.

  • Mellinger, Ch., & Shreve, G. M. 2006. Match Evaluation and Over-editing in a Translation Memory Environment. In: Muñoz, R. (ed.) Reembedding Translation Process Research. Amsterdam: John Benjamins. 131148.

    • Search Google Scholar
    • Export Citation
  • Miller, R. B. 1971. Human Ease of Use Criteria and their Tradeoffs. IBM Report TR 00.2185. Poughkeepsie, NY: IBM Corporation.

  • Nielsen, J. 1993. Usability Engineering. London: Academic Press.

  • Nunnally, J. & Bernstein, I. 1994. Psychometric Theory 3E. New York: McGraw-Hill.

  • O'Brien, S. 2007. Eye-tracking and Translation Memory Matches. Perspectives Vol. 14, 185205.

  • Pavlović, N. & Jensen, K. T. H. 2009. Eye Tracking Translation Directionality. In: Pym, A. & Perekrestenko, A. (eds) Translation Research Projects 2. Tarragona: Universitat Rovira i Virgili. 101119.

    • Search Google Scholar
    • Export Citation
  • Plitt, M. & Masselot, F. 2010. A Productivity Test of Statistical Machine Translation Post-editing in a Typical Localization Context. The Prague Bulletin of Mathematical Linguistics Vol. 93. 716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popović, M. 2018. Language-related Issues for NMT and PBMT for English–German and English–Serbian. Machine Translation Vol. 32. No. 3. 237253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revythi, A., & Tselios, N. 2019. Extension of Technology Acceptance Model by using System Usability Scale to Assess Behavioral Intention to Use E-learning. Education and Information Technologies Vol. 24. No. 4. 23412355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossi, C. 2019. Uses and Perception of Machine Translation at the European Commission. The Journal of Specialised Translation Vol. 31, 177200.

    • Search Google Scholar
    • Export Citation
  • Screen, B. 2017. Machine Translation and Welsh: Analysing free Statistical Machine Translation for the Professional Translation of an Under-researched Language Pair. The Journal of Specialised Translation Vol. 28, 317344.

    • Search Google Scholar
    • Export Citation
  • Screen, B. 2019. What Effect does Post-editing Have on the Translation Product from an End-user’s Perspective? The Journal of Specialised Translation 31. 133157.

    • Search Google Scholar
    • Export Citation
  • Shackel, B. & Richardson, S. J. (eds) 1991. Human Factors for Informatics Usability. Cambridge: Cambridge University Press.

  • Suojanen, T., Koskinen, K. & Tuominen, T. 2015. User-centered Translation. Abingdon: Routledge.

  • TAUS. 2013. Adequacy/Fluency Guidelines. https://taus.net/academy/best-practices/evaluate-best-practices/adequacy-fluency-guidelines.

  • TAUS. 2016. TAUS Post-editing Guidelines. https://www.taus.net/think-tank/articles/postedit-articles/taus-post-editing-guidelines.

  • TAUS. 2019. TAUS Keynotes Asia 2019. https://www.taus.net/academy/reports/event-reports/taus-keynotes-asia-2019.

  • Thorpe, A., Nesbitt, K., & Eidels, A. 2019. Assessing Game Interface Workload and usability: A Cognitive Science Perspective. In: Proceedings of the Australasian Computer Science Week multiconference, ACSW 2019 .ACM. 44:144:8 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Travis, D. 2017. E-commerce Usability: Tools and Techniques to Perfect the On-line Experience. London: CRC Press.

  • Vieira, L. N. 2016. Cognitive Effort in Post-Editing of Machine Translation: Evidence From Eye Movements, Subjective Ratings, and Think-Aloud Protocols. PhD Thesis. Newcastle University.

    • Search Google Scholar
    • Export Citation
  • Yamada, M. 2015. Can College Students Be Post-editors? An Investigation into Employing Language Learners in Machine Translation plus Post-editing Settings. Machine Translation Vol. 29. No. 1. 4967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, M. 2019. The Impact of Google Neural Machine Translation on Post-editing by Student Translators. The Journal of Specialised Translation Vol. 31. 87106.

    • Search Google Scholar
    • Export Citation
  • Yousef, A. M. F., Chatti, M. A., Schroeder, U., & Wosnitza, M. 2015. A Usability Evaluation of a Blended MOOC Environment: An Experimental Case Study. The International Review of Research in Open and Distributed Learning Vol. 16. No. 2. 6993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

Author Guidelines are available in PDF format.
Please, download the file from HERE.

 

Editor-in-Chief: Kinga KLAUDY (Eötvös Loránd University, Hungary)

Consulting Editor: Pál HELTAI (Kodolányi János University, Hungary)

Managing Editor: Krisztina KÁROLY (Eötvös Loránd University, Hungary)

EDITORIAL BOARD

  • Andrew CHESTERMAN (University of Helsinki, Finland)
  • Kirsten MALMKJÆR (University of Leicester, UK)
  • Christiane NORD (University of Free State, Bloemfontein, South Africa)
  • Anthony PYM (Universitat Rovira i Virgili, Tarragona, Spain, University of Melbourne, Australia)
  • Mary SNELL-HORNBY (University of Vienna, Austria)
  • Sonja TIRKKONEN-CONDIT (University of Eastern Finland, Joensuu, Finland)

ADVISORY BOARD

  • Mona BAKER (Shanghai International Studies University, China, University of Oslo, Norway)
  • Łucja BIEL (University of Warsaw, Poland)
  • Gloria CORPAS PASTOR (University of Malaga, Spain; University of Wolverhampton, UK)
  • Rodica DIMITRIU (Universitatea „Alexandru Ioan Cuza” Iasi, Romania)
  • Birgitta Englund DIMITROVA (Stockholm University, Sweden)
  • Sylvia KALINA (Cologne Technical University, Germany)
  • Haidee KOTZE (Utrecht University, The Netherlands)
  • Sara LAVIOSA (Università degli Studi di Bari Aldo Moro, Italy)
  • Brian MOSSOP (York University, Toronto, Canada)
  • Orero PILAR (Universidad Autónoma de Barcelona, Spain)
  • Gábor PRÓSZÉKY (Hungarian Research Institute for Linguistics, Hungary)
  • Alessandra RICCARDI (University of Trieste, Italy)
  • Edina ROBIN (Eötvös Loránd University, Hungary)
  • Myriam SALAMA-CARR (University of Manchester, UK)
  • Mohammad Saleh SANATIFAR (independent researcher, Iran)
  • Sanjun SUN (Beijing Foreign Studies University, China)
  • Anikó SOHÁR (Pázmány Péter Catholic University,  Hungary)
  • Sonia VANDEPITTE (University of Gent, Belgium)
  • Albert VERMES (Eszterházy Károly University, Hungary)
  • Yifan ZHU (Shanghai Jiao Tong Univeristy, China)

Prof. Kinga Klaudy
Eötvös Loránd University, Department of Translation and Interpreting
Múzeum krt. 4. Bldg. F, I/9-11, H-1088 Budapest, Hungary
Phone: (+36 1) 411 6500/5894
Fax: (+36 1) 485 5217
E-mail: 

  • WoS Arts & Humanities Citation Index
  • Wos Social Sciences Citation Index
  • WoS Essential Science Indicators
  • Scopus
  • Linguistics Abstracts
  • Linguistics and Language Behaviour Abstracts
  • Translation Studies Abstractst
  • CABELLS Journalytics

2022  
Web of Science  
Total Cites
WoS
283
Journal Impact Factor 0.7
Rank by Impact Factor

Linguistics (Q3)

Impact Factor
without
Journal Self Cites
0.6
5 Year
Impact Factor
1.4
Journal Citation Indicator 0.66
Rank by Journal Citation Indicator

Linguistics (Q3)
Language & Linguistics (Q2)

Scimago  
Scimago
H-index
20
Scimago
Journal Rank
0.796
Scimago Quartile Score

Linguistics and Language 67/1103 (Q1)

Scopus  
Scopus
Cite Score
1.6
Scopus
CIte Score Rank
Language and Linguistics 208/1001 (79th PCTL)
Linguistics and Language 243/1078 (77th PCTL)
Scopus
SNIP
0.868

2021  
Web of Science  
Total Cites
WoS
214
Journal Impact Factor 1,292
Rank by Impact Factor Linguistics 98/194
Impact Factor
without
Journal Self Cites
1,208
5 Year
Impact Factor
1,210
Journal Citation Indicator 0,85
Rank by Journal Citation Indicator Language & Linguistics 108/370
Linguistics 122/274
Scimago  
Scimago
H-index
19
Scimago
Journal Rank
0,994
Scimago Quartile Score Linguistics and Language 67/1103 (Q1)
Scopus  
Scopus
Cite Score
2,5
Scopus
CIte Score Rank
Language and Linguistics 121/968 (Q1, D2)
Linguistics and Language 128/1032 (Q1, D2)
Scopus
SNIP
1,576

2020  
Total Cites
WoS
169
Journal Impact Factor 1,160
Rank by Impact Factor

Linguistics 99/193 (Q3)
Languages & Linguistics 57/205 (Q2)

Impact Factor
without
Journal Self Cites
1,040
5 Year
Impact Factor
1,095
Journal Citation Indicator 1,01
Rank by Journal Citation Indicator

Linguistics 107/259 (Q2)
Language & Linguistics 94/356 (Q2)

Citable
Items
12
Total
Articles
12
Total
Reviews
0
Scimago
H-index
14
Scimago
Journal Rank
1,257
Scimago Quartile Score

Language and Linguistics Q1
Linguistics and Language Q1

Scopus
Cite Score
93/50=1,9

Scopus
Cite Score Rank

Language and Linguistics 130/879 (Q1)
Linguistics and Language 147/935 (Q1)
Scopus
SNIP
1,670

2019  
Total Cites
WoS
91
Impact Factor 0,360
Impact Factor
without
Journal Self Cites
0,320
5 Year
Impact Factor
0,500
Immediacy
Index
0,083
Citable
Items
12
Total
Articles
12
Total
Reviews
0
Cited
Half-Life
n/a
Citing
Half-Life
12,7
Eigenfactor
Score
0,00018
Article Influence
Score
0,234
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,02306
Average
IF
Percentile
20,053 (Q1)
Scimago
H-index
13
Scimago
Journal Rank
0,648
Scopus
Scite Score
94/51=1,8
Scopus
Scite Score Rank
Language and Linguistics 120/830 (Q1)
Linguistics and Language 135/884 (Q1)
Scopus
SNIP
1.357

Across Languages and Cultures
Publication Model Hybrid
Submission Fee

none

Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 318 EUR / 384 USD
Print + online subscription: 372 EUR / 452 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Across Languages and Cultures
Language English
Size B5
Year of
Foundation
1999
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1585-1923 (Print)
ISSN 1588-2519 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 48 8 9
Jul 2023 70 5 7
Aug 2023 46 4 9
Sep 2023 38 2 4
Oct 2023 58 6 0
Nov 2023 62 19 1
Dec 2023 16 2 0