The static analysis of elastic structures uses a mechanical model of the real structure. The mathematical model describes this mechanical model, and provides the first-, second- and third-order theories, depending on the order of simplification. The goal of analysis is the equilibrium path that is derived from the geometrical, physical, and equilibrium relationships between the internal and external state variables. There is a standard method to represent these relationships in a fundamental diagram, in which the relationships are displayed with partially common axes in four quarters of a graph. The paper answers the following questions: What is the exact meaning of the four quarters of this graph? Does the fundamental diagram give information on the stability of the structure? What is the reliability of the results obtained from the second-order theories? How can we generalise our statements to models with more than one degrees of freedom?
Halász O.: Acélszerkezetek III/1. Stabilitáselmélet. Egyetemi jegyzet, Tankönyvkiadó, Budapest, 1966.
Thompson, J. M. T., Hunt, G. W.: A General Theory of Elastic Stability. Wiley, London, 1973.
A General Theory of Elastic Stability. , ().
Kollár L. (szerk.): A mérnöki stabilitáselmélet különleges problémái. Akadémiai Kiadó, Budapest, 1991.
A mérnöki stabilitáselmélet különleges problémái. , ().
Kurutz M.: Effect of nonlinearity in nonsmooth and nonconvex structural behaviour. In: Nonsmooth/Nonconvex Mechanics: Modelling, Analysis and Numerical Methods, A volume dedicated to the memory of Professor P. D. Panagiotopoulos. D. Y. Gao, R. W. Ogden, G. E. Stavroulakis (eds), Kluwer Academic Publishers, Dordrecht, 2000. 189-230.
Nonsmooth/Nonconvex Mechanics: Modelling, Analysis and Numerical Methods, A volume dedicated to the memory of Professor P. D. Panagiotopoulos , () 189 -230 .
Poston, T., Stewart, J.: Katasztrófaelmélet és alkalmazásai. Műszaki Könyvkiadó, Budapest, 1985.