View More View Less
  • 1 Pécs University Faculty of General Medicine, 1st Internal Medicine H-7624 Pécs Ifjúság út 13 Hungary
  • 2 Pécs University Faculty of General Medicine, Department of Clinical Chemistry H-7624 Pécs Ifjúság út 13. Hungary
  • 3 Pécs University Faculty of General Medicine, Pharmacy Centre H-7624 Pécs Honvéd u. 3. Hungary
  • 4 Pécs University Faculty of General Medicine, Department of Medical Microbiology and Immunology H-7643 Pécs Szigeti út 12 Hungary
Restricted access

Direct bioautography is a potent means of obtaining information about the antimicrobial activity of a compound separated from a complex mixture. In this process the developed TLC plate is dipped into a broth culture of a test bacterium and the bacterium will grow directly on the plate. Optimum experimental conditions must, however, be used for each test bacterium.The main purpose of this study was to find optimum culture conditions for a Gram-negative test bacterium, Escherichia coli (ATCC 25922) enabling us to establish a direct bioautographic method with the shortest possible performance time. Because the intracellular adenosine-5′-triphosphate (ATP) level is a direct and sensitive measure of bacterial well-being, ATP assay was used for this purpose. As far as we know this is the first report of the use of an ATP method for optimization of direct bioautography with E. coli . Our optimizing experiments on E. coli culture showed that the bacteria had to be in the log phase (optical density, OD600nm = 0.1–0.4) in the bacterial suspension used for dipping. TLC plates immersed in the log-phase culture needed a shorter incubation time for bacterial growth on the TLC plate (3 h) than for the original ‘overnight’ culturing suggested in studies by others.In this paper we will show that:

  1. ATP assay is a valid method for optimizing E. coli direct bioautography. Bacterial ATP level oscillates during the growth phase in culture media. TLC plates should be immersed in E. coli dipping suspension with OD600nm = 0.1–0.4. Dipping a developed TLC plate for 10 s gave acceptable results. Incubation of the seeded TLC plate at 37°C for 3 h was found to be optimum. An ATP/protein ratio of 10–15 nmol mg −1 in dipping culture and ∼5 nmol mg −1 on seeded TLC plates were the minimum threshold values for visualization of living bacteria by means of the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) reaction. With our optimized coditions the total performance time of E. coli direct bioautography is 9.6 h instead of the originally reported 11.5 h. Our procedure results in much sharper contrast of the inhibition zone than that without optimization.

  • J.L. Rios, M.C. Recio , and A. Villar , J. Ethnopharmacol. 23 (1988) 127–149.

    Villar A. , '' (1988 ) 23 J. Ethnopharmacol. : 127 -149.

  • V. Betina , J. Chromatogr. 78 (1973) 41–51.

    Betina V. , '' (1973 ) 78 J. Chromatogr. : 41 -51.

  • L. Botz, S. Nagy, B. Kocsis , and L. Gy. Szabó , Fundam. Clin. Pharmacol. 13 (Suppl. I) (1999) 359s.

    Szabó L. Gy. , '' (1999 ) 13 Fundam. Clin. Pharmacol. : 359s -.

  • Y. Maehara, H. Anai, R. Tamada , and K. Sugimachi , Eur. J. Cancer. Clin. Oncol. 23 (1987) 273–276.

    Sugimachi K. , '' (1987 ) 23 Eur. J. Cancer. Clin. Oncol. : 273 -276.

  • F.R. Ahmann, H.S. Garewal, R. Schifman, A. Celniker , and S. Rodney , In Vitro Cellular Dev. Biol. 23 (1987) 474–480.

    Rodney S. , '' (1987 ) 23 In Vitro Cellular Dev. Biol. : 474 -480.

  • S. Nagy, B. Kocsis , and L. Botz , J. Planar. Chromatogr. 15 (2002) 132–137.

    Botz L. , '' (2002 ) 15 J. Planar. Chromatogr. : 132 -137.

  • L. Botz, S. Nagy , and B. Kocsis , Detection of Microbiologically Active Compounds, in: Sz. Nyiredy (Ed.) Planar Chromatography, Springer, Budapest, 2001, pp. 489–516.

    Kocsis B. , '', in Planar Chromatography , (2001 ) -.

  • P.E. Stanley , J. Biolum. Chemilum. 4 (1989) 375–380.

    Stanley P.E. , '' (1989 ) 4 J. Biolum. Chemilum. : 375 -380.

  • A. Lundin and A. Thore , Appl. Microbiol. 30 (1975) 713–721.

    Thore A. , '' (1975 ) 30 Appl. Microbiol. : 713 -721.

  • G.K. Turner , in: K. Van Dyke (Ed.) Bioluminescence and Chemiluminescence: Instruments and Applications, CRC Press, Boca Raton, Florida, 43–78, 1985.

    Turner G.K. , '', in Bioluminescence and Chemiluminescence: Instruments and Applications , (1985 ) -.

    • Search Google Scholar
  • T. Kőszegi , Clin. Chem. 34 (1988) 2578.

    Kőszegi T. , '' (1988 ) 34 Clin. Chem. : 2578 -.

  • M.M. Bradford , Anal. Biochem. 72 (1976) 248–254.

    Bradford M.M. , '' (1976 ) 72 Anal. Biochem. : 248 -254.

  • P.P.C. Bowden and A.M. James , Microbios 43 (1985) 93–105.

    James A.M. , '' (1985 ) 43 Microbios : 93 -105.

  • K. Kurokawa, S. Nishida, A. Emoto, K. Sekimizu , and T. Katayama , EMBO J. 18 (1999) 6642–6652.

    Katayama T. , '' (1999 ) 18 EMBO J. : 6642 -6652.

  • R. Eymann and H.E. Hauck , Proc. Int. Symp. Planar Separations, Planar Chromatography 2000, Lillafüred, Hungary, pp. 67–75.

  • M.O. Hamburger and G.A. Cordell , J. Nat. Prod. 50 (1987) 19–22.

    Cordell G.A. , '' (1987 ) 50 J. Nat. Prod. : 19 -22.

  • E. Tyihák, L. Botz, S. Nagy, B. Kocsis , and E. Mincsovics , Proc. Int. Symp. Planar Separations, Planar Chromatography 2001, Lillafüred, Hungary, pp. 3–13.

    Mincsovics E. , '', in Proc. Int. Symp. Planar Separations, Planar Chromatography , (2001 ) -.

    • Search Google Scholar

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 9 7
Jul 2020 3 0 0
Aug 2020 5 1 1
Sep 2020 4 2 3
Oct 2020 0 0 0
Nov 2020 9 0 0
Dec 2020 0 0 0