A method for optimization of a TLC separation based on use of a genetic algorithm is described. The procedure was tested by optimization of the reversed-phase HPTLC separation of a mixture of six pesticides and satisfactory optimum results were obtained. The performance of the genetic algorithm was tested by measurement of the number of generations, the population size, the mutation probability, and the crossover probability. Three separation criteria ( MRF , R * and R **) were examined as fitness functions. The genetic algorithm was compared with the simplex method.
C.F. Poole , J. Chromatogr. 856 (1999) 399–427.
Poole C.F. , '' (1999 ) 856 J. Chromatogr. : 399 -427.
P. Nikitas, A. Pappa-Louisi, A. Papageorgiou , and A. Zitrou , J. Chromatogr. 942 (2002) 93–105.
Zitrou A. , '' (2002 ) 942 J. Chromatogr. : 93 -105.
C. Cimpoui , Optimization. In: J. Sherma and B. Fried (Eds), Handbook of Thin-Layer Chromatography, Marcel Dekker, New York, 2003, 81–98.
Cimpoui C. , '', in Handbook of Thin-Layer Chromatography , (2003 ) -.
S. Babić, M. Petrović , and M. Kaštelan-Macan , Kem. Ind. 47 (7/8) (1998) 275–279.
Kaštelan-Macan M. , '' (1998 ) 47 Kem. Ind. : 275 -279.
B.M.J. De Spiegeleer and P.H.M. De Moerloose , Anal. Chem. 59 (1987) 62–64.
Moerloose P.H.M. , '' (1987 ) 59 Anal. Chem. : 62 -64.
R. Wehrens and L.M.C. Buydens , Classical and Nonclassical Optimization Methods. In: R.A. Meyers (Ed.) Encyclopedia of Analytical Chemistry, Wiley, Chichester, 2000, pp. 9678–9689.
Buydens L.M.C. , '', in Encyclopedia of Analytical Chemistry , (2000 ) -.
A. Brunetti , Comput. Phys. Commun. 124 (2/3) (2000) 204–211.
Brunetti A. , '' (2000 ) 124 Comput. Phys. Commun. : 204 -211.
A.E. Eiben and M. Schoenauer , Inform. Process. Lett. 82 (1) (2002) 1–6.
Schoenauer M. , '' (2002 ) 82 Inform. Process. Lett. : 1 -6.