Authors:
Darija Obradović University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia

Search for other papers by Darija Obradović in
Current site
Google Scholar
PubMed
Close
,
Slavica Filipic University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia

Search for other papers by Slavica Filipic in
Current site
Google Scholar
PubMed
Close
,
Katarina Nikolic University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia

Search for other papers by Katarina Nikolic in
Current site
Google Scholar
PubMed
Close
, and
Danica Agbaba University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia

Search for other papers by Danica Agbaba in
Current site
Google Scholar
PubMed
Close
Restricted access

The experimental design and the quantitative structure—retention relationship (QSRR) study were applied in order to investigate the retention behavior and to select optimal experimental conditions for the separation of ziprasidone and its five impurities by thin-layer chromatography (TLC). According to a preliminary study, central composite face-centered design was chosen to examine the influence of four factors, i.e., the developing distance, the amount of toluene in the mobile phase, the amount of acetic acid in the mobile phase, and the spot band size, on the retention behavior of the examined compounds. The optimal separation conditions were achieved on the chromatographic plates precoated with silica gel 60 F254 using toluene—methanol—glacial acetic acid (7.5:0.5:0.5, v/v) as the mobile phase in combination with a band width of 6 mm and a developing distance of 110 mm. The retention parameters (hRF) obtained under the selected chromatographic conditions, along with the calculated molecular descriptors, were further used for the QSRR study. Statistically, the best QSRR model (R2: 0.939, Q2: 0.916, and RMSEE: 2.98) composed of the three significant variables, i.e., the harmonic oscillator model of aromaticity (HOMA) index, the highest occupied molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) energy, was developed, using the partial least square methodology. A very good agreement was obtained between the QSRR predicted and the experimentally observed hRf values for an additional ziprasidone impurity (TS1). These results point out to a high prediction potential of the developed QSRR model for the evaluation of the retention behavior of the other ziprasidone impurities.

  • [1]

    T.L. Lemke , D.A. Williams, V.F. Roche, S.W. Zito, Foye’s P rinciples of Medicinal Chemistry, 7th edn., Lippincott Williams & Wilkins, Baltimore, MD, 2012, 449484.

    • Search Google Scholar
    • Export Citation
  • [2]

    W.M. Greenberg , L. Citrome, CNS Drug Rev. 13 (2007) 137177.

  • [3]

    European Pharmacopoeia, 8th edn., Council of Europe, Strasbourg, 2014.

  • [4]

    United States Pharmacopoeia, 38NF-33, US Pharmacopeia Convention, Rockville, MD, 2015.

  • [5]

    M.S.M. Shenger , S. Filipic, K. Nikolic, D. Agbaba, J. Liq. Chromatogr. Relat. Technol. 37 (2014) 28292845.

  • [6]

    S. Filipic , M. Elek, K. Nikolic, D. Agbaba, J. Planar Chromatogr. 28 (2015) 119125.

  • [7]

    I. Rezic , T. Rezic, LJ. Bokic, J. Planar Chromatogr. 20 (2007) 173177.

  • [8]

    G. Zhang , A.V.Jr. Terry, M.G. Bartlett, J. Chromatogr. B 856 (2007) 2028.

  • [9]

    N.L. Prasanthi , N. Rama Rao, Int. J. Pharm. Pharm. Sci. 2 (2010) 120122.

  • [10]

    C. Farina , L. Kremser, M.A. Raggi, E. Kenndler, J. Pharm. Biomed. Anal. 46 (2008) 471476.

  • [11]

    R. Skibinski , L. Komsta, J. Planar Chromatogr. 23 (2010) 2327.

  • [12]

    D. Kul , M. Gumustas, B. Uslu, S.A. Ozkan, Talanta 82 (2010) 286295.

  • [13]

    A. Singh , B.M. Rao, G.R. Desphie, S. Sangaraju, M.K. Srinivasu, M.L. Devi, P.V.V. Satyanarayana, K.B. Chirasekhar, Chromatographia 65 (2007) 191196.

    • Search Google Scholar
    • Export Citation
  • [14]

    Z.A. El-Sherif , B. El-Zeany, O.M. El-Houssini, M. Rashed, H. Aboul-Enein, Biomed. Chromatogr. 18 (2004) 143149.

  • [15]

    D. Zakowiecki , K. Cal, Acta Pol. Pharm. Drug Res. 69 (2012) 809819.

  • [16]

    S. Ray , S.K. Kumari, C. Krishnaiah, N.A. Rao, J. Liq. Chromatogr. Relat. Technol. 36 (2013) 968982.

  • [17]

    I. Mohamed , W.F. Belal, N. El-Enany, M. Eid, R.N. El-Shaheny, J. Fluoresc. 21 (2011) 16591667.

  • [18]

    M. Pavlovic , M. Malesevic, K. Nikolic, D. Agbaba, J. AOAC Int. 94 (2011) 713722.

  • [19]

    K. Nikolic , M. Pavlovic, A. Smoliński, D. Agbaba, Comb. Chem. High T. Scr. 15 (2012) 730744.

  • [20]

    Umetrics AB, SIMCA P+ program, Version 12.0.0.0, Umeå, May 20, 2008, www.umetrics.com.

  • [21]

    J.J.P. Stewart , J. Comput. Chem. 10 (1989) 209220.

  • [22]

    J.J.P. Stewart , J. Comput. Chem. 10 (1989) 221264.

  • [23]

    M.J. Frisch , G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, CT, 2009.

    • Search Google Scholar
    • Export Citation
  • [24]

    CambridgeSoft Corporation, ChemBio3D Ultra, Version 13.0. Cambridge, MA, 2013.

  • [25]

    C.C.J. Roothan , Rev. Mod. Phys. 23 (1951) 6989.

  • [26]

    A.D. Becke , J. Chem. Phys. 98 (1993) 56485652.

  • [27]

    C. Lee , W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785789.

  • [28]

    R.P. Iczkowski , J.L. Margrave, J. Am. Chem. Soc. 83 (1961) 35473551.

  • [29]

    R.G. Parr , R.G. Pearson, J. Am. Chem. Soc. 105 (1983) 75127516.

  • [30]

    Talete srl, DRAGON (Software for Molecular Descriptor Calculation), Version 6.0, 2010, http://www.talete.mi.it/.

  • [31]

    S. Wold , E. Johansson, M. Cocchi, in: H. Kubinyi (ed.), 3D QSAR in Drug Design, Theory, Methods, and Applications, ESCOM Science Publishers, Leiden 1993, pp. 523550.

    • Search Google Scholar
    • Export Citation
  • [32]

    L. Eriksson , E. Johansson, N. Kettaneh-Wold, J. Trygg, C. Wikstrom, S. Wol (eds.), Multi- and Megavariate Data Analysis. Basic Principles and Applications I, 2nd edn., Umetrics Academy, Umeå, 2001.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Planar Chromatography - Modern TLC
Language English
Size A4
Year of
Foundation
1988
Volumes
per Year
1
Issues
per Year
6
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0933-4173 (Print)
ISSN 1789-0993 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 7 1 0
Feb 2024 38 0 0
Mar 2024 14 0 0
Apr 2024 11 0 0
May 2024 5 0 0
Jun 2024 9 0 0
Jul 2024 0 0 0