View More View Less
  • 1 University of Western Australia School of Medicine and Pharmacology, Crawley, WA, Australia
  • 2 University of Western Australia, Crawley, Australia
  • 3 Chromatech Scientific Pty Ltd., Yangebup WA 6164, Western Australia
Restricted access

This paper explores the high-performance thin-layer chromatographic (HPTLC) fingerprinting of non-sugar constituents for the authentication of honeys using highly antibacterial Jarrah (Eucalyptus marginata) and Marri (Corymbia calophylla) honeys sourced from Western Australia, different Leptospermum-derived Manuka honeys, and a typical table honey from an undisclosed floral source as test samples. As is demonstrated in this study, using HPTLC fingerprinting, it is possible to define differences in botanical origin as the honey fingerprints exhibit a unique profile of bands (i.e., Rf values, color) and peak profiles (i.e., Rf and peak intensity values, peak intensity ratios) that differ distinctly from each other. The identification of patterns of common bands among honeys derived from the same floral source as authentication tool is possible. Further, slight differences among honeys from the same botanical origin might be due to age, processing, or regional factors. The HPTLC analysis of two differently aged Jarrah honeys of the same supplier indicates also that future closer investigation of intraspecies differences might assist in developing HPTLC-supported quality control tools.

  • [1]

    R. D. Forrest , J. R. Soc. Med. 75 (1982) 198205.

  • [2]

    E. Mavric , S. Wittmann, G. Barth, T. Henle, Mol. Nutr. Food Res. 52 (2008) 483489.

  • [3]

    C. Adams , M. Manley-Harris, P. C. Molan, Carbohydr. Res. 344 (2009) 10501053.

  • [4]

    L. M. Bang , C. Buntting, P. Molan, J. Alternat. Compl. Med. 9 (2003) 267273.

  • [5]

    Ministry for Primary Industries New Zealand (MPINZ), Apiculture Monitoring Programme MPINS, Wellington, 2013.

  • [6]

    K. M. Rogers , M. Manley-Harris, NZ Beekeeper J. 23 (2014) 13.

  • [7]

    E. Anklam , Food Chem. 63 (1998) 549562.

  • [8]

    K. Beckmann , G. Beckh, C. Lüllmann, K. Speer, Lebensmittelchemie 61 (2007) 132133.

  • [9]

    Z. Jandric , R. D. Frew, L. N. Fernandez-Cedi, A. Cannavan, Food Control (2015); http://dx.doi.org/10.1016/j.foodcont.2015.10.010.

  • [10]

    Y. Kato , R. Fujinaka, A. Ishisaka, Y. Nitta, N. Kitamoto, Y. Takimoto, J. Agric. Food Chem. 62 (2014) 64006407.

  • [11]

    V. Kaškoniene , P. R. Venskutonis, Compr. Rev. Food Sci. Food Saf. 9 (2010) 620634.

  • [12]

    Z. Jandric , S. A. Haughey, R. D. Frew, K. McComb, P. Galvin-King, C. T. Elliott, Food Chem. (2015); http://dx.doi.org/10.1016/j.foodchem.2014.11.165.

    • Search Google Scholar
    • Export Citation
  • [13]

    M. N. C. Grainger , M. Manley-Harris, N. A. M. Fauzi, M. M. Farid, Food Chem. 153 (2014) 134139.

  • [14]

    J. Irish , S. Blair, D. A. Carter, PLoS One 6 (2011) e18229.

  • [15]

    D. Kasote , A. Ahmad, W. Chen, S. Combrinck, A. Viljoen, Phytochem. Lett. 11 (2015) 326331.

  • [16]

    P. Ristivojevic , F. L. Andric, J. D. Trifkovic, I. Vovk, L. Z. Stanisavljevic, Z. L. Tešic, D. M. Milojkovic-Opsenica, J. Chemometrics 28 (2013) 301310.

    • Search Google Scholar
    • Export Citation
  • [17]

    A. Puscas , A. Hosu, C. Cimpoiu, J. Chromatogr. A 1272 (2013) 132135.

  • [18]

    E. S. Chemetsova , I. A. Revelsky, G. E. Morlock, Anal. Bioanal. Chem. 401 (2011) 325332.

  • [19]

    C. Chen , L. T. Campbell, S. E. Blair, D. E. Carter, Front. Microbiol. 3 (2012) 18.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2020 23 0 0
Sep 2020 10 0 0
Oct 2020 5 0 0
Nov 2020 7 0 0
Dec 2020 4 0 0
Jan 2021 9 0 0
Feb 2021 0 0 0