View More View Less
  • 1 USDA-ARS, Subtropical Horticulture Research Station, Miami, FL 33158, USA
  • 2 USDA-ARS, Natural Products Utilization Research Unit, University, MS 38677,, USA
  • 3 School of Pharmacy, The University of Mississippi, University, MS 38677, USA
  • 4 Beijing University of Chinese Medicine, Beijing, 100102, China
  • 5 Anadolu University, 26470, Eskisehir, Turkey
  • 6 Turkey and Anadolu University, 26470, Eskisehir, Turkey
  • 7 USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, , Gainesville, FL 32608, USA
  • 8 Faculty of Pharmacy, Near East University, Lefkosa (Nicosia) TRNC, Mersin 10, Turkey
  • 9 Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
Restricted access

In the present work, fruits of Prangos platychlaena Boiss. ex Tchihat. ssp. platychlaena (Apiaceae) collected from eastern (sample A) and central (sample B) parts of Turkey were subjected to hydrodistillation to yield essential oils (EOs). The chemical composition of P. platychlaena ssp. platychlaena fruit oil was analyzed by gas chromatography–flame ionization detector (GC–FID) and gas chromatography–mass spectrometry (GC–MS) techniques. An unknown compound with m/z 178 [M]+ in high percentages was detected in both EOs (45.8% and 11.2% in samples A and B, respectively). Column chromatography on silica gel was subsequently followed by the sample A and yielded a new acetylenic derivative (1), which was characterized by spectroscopic techniques as (2S)- 3,5-nonadiyne-2-yl acetate. Samples A and B oils were characterized by a series of acetylenic derivatives like 3,5-nonadiyne (24.5% and 5.8% in A and B, respectively), (Z)-3,5-nonadiyne-7-ene (0.2% in A), and (E)-3,5-nonadiyne-7-ene (0.5% in A). Monoterpenes α-pinene (6.8% and 12.8%), α-phellandrene (0.1% and 17.1%), and β-phellandrene (4.2% and 22.4%) were found to be the major components in P. platychlaena ssp. platychlaena EOs in samples A and B, respectively. The components of P. platychlaena ssp. platychlaena EOs were separated on the overpressured layer chromatography (OPLC) plates, and the plates were subsequently subjected to direct-bioautography assays using three plant pathogens such as Colletotrichum acutatum, C. fragariae, and C. gloeosporioides; however, no antifungal activity was observed. Due to a high yield, sample A was evaluated for its repellent activity against female mosquito Aedes aegypti and attraction of sterile male Mediterranean fruit fly Ceratitis capitata. Sample A demonstrated good repellency against Ae. aegypti in human-based cloth patch bioassays and no attraction to C. capitata in short range bioassays.

  • [1]

    K.H.C Baser , N. Kirimer, Nat. Vol. Essent. Oils 1 (2014) 150.

  • [2]

    M.G. Pimenov , M.V. Leonov, Tur. J. Bot. 28 (2004) 139145.

  • [3]

    Y. Yesil , E. Akalin, J. Fac. Pharm. Istanbul 46 (2016) 2337.

  • [4]

    A. Dogan , G. Bulut, E. Tuzlacı, I. Senkardes, J. Fac. Pharm. Ist. Univ. 44 (2014) 251262.

  • [5]

    I. Kaval , L. Behcet, U. Cakilcioglu, J. Ethnopharmacol. 155 (2014) 171184.

  • [6]

    G. Bulut , E. Tuzlacı, A. Dogan, I. Senkardes, J. Fac. Pharm. Ist. Univ. 44 (2014) 163179.

  • [7]

    A. Uzel , T. Dirmenci, A. Celik, T. Arabaci, Chem. Nat. Comp. 42 (2006) 169171.

  • [8]

    A. Ulubelen , G. Topcu, N. Tan, S. Olcal, C. Johansson, M. Ucer, H. Birman, S. Tamer, J. Ethnopharmacol. 45 (1995) 193197.

  • [9]

    N. Kucukboyaci , F. Ayaz, N. Adiguzel, B. Bani, A.C. Goren, Nat. Prod. Com. 11 (2016) 16971700.

  • [10]

    E. Tyihák , E. Mincsovics, H. Kalász, J. Chromatogr. 174 (1979) 7581.

  • [11]

    E. Mincsovics , M. Garami, L. Kecskés, B. Tapa, Z. Végh, Gy. Kátay, E. Tyihák, J. AOAC Int. 82 (1999) 587598.

  • [12]

    E. Tyihák , A.M. Móricz, E. Mincsovics, in: E. Tyihák (ed.), Forced Flow Layer Chromatography, Elsevier, Amsterdam, 2016, pp. 49186.

    • Search Google Scholar
    • Export Citation
  • [13]

    E. Tyihák , E. Mincsovics, in: Sz. Nyiredy (ed.), Planar Chromatography: A Retrospective View For The Third Millennium, Springer Scientific Publisher, Budapest, 2001, p. 137.

    • Search Google Scholar
    • Export Citation
  • [14]

    N. Tabanca , R.S. Pawar, D. Ferreira, J.P.J. Marais, S.I. Khan, V. Jishi, D.E. Wedge, I.A. Khan, Planta Med. 73 (2007) 11071111.

  • [15]

    X. Wang , D.E. Wedge, N. Tabanca, R.D. Johnson, S.J. Cutler, P.F. Pace, B.J. Smith, L. Zhou, Nat. Prod. Commun. 3 (2008) 10791084.

  • [16]

    E. Mincsovics , N. Tabanca, A.M. Móricz, D.E. Wedge, E. Tyihák, J. Planar Chromatogr. 23 (2010) 225226.

  • [17]

    X. Wang , E. Habib, F. Leon, M.R. Radwan, N. Tabanca, J. Gao, D.E. Wedge, S.J. Cutler, Chem. Biodivers. 8 (2011) 23312340.

  • [18]

    E. Tyihák , E. Mincsovics, A.M. Móricz, J. Chromatogr. A 1232 (2012) 318.

  • [19]

    A. Altintas , N. Tabanca, E. Tyihák, P.G. Ott, A.M. Móricz, E. Mincsovics, D.E. Wedge, J. AOAC Int. 96 (2013) 12001208.

  • [20]

    A.M. Móricz , P.G. Ott, J. AOAC Int. 98 (2015) 850856.

  • [21]

    A.M. Móricz , D. Krüzselyi, P.G. Ott, J. Planar Chromatogr. 30 (2017) 121125.

  • [22]

    D.H. Hochmuth , in: D.H. Hochmuth (ed.), MassFinder-4, Hochmuth Scientific Consulting, Hamburg, 2008.

  • [23]

    R.P. Adams (ed.), Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Allured Publishing Corporation, Carol Stream, IL, 2007.

    • Search Google Scholar
    • Export Citation
  • [24]

    M.T.W. Hearn , Org. Magn. Resonance 9 (1977) 141144.

  • [25]

    R.S. Chauhan , M.C. Nautiyal, A. Tava, M. Mella, Helv. Chim. Acta 95 (2012) 780787.

  • [26]

    B. Adhikari , H.P. Devkota, K.R. Joshi, T. Watanabe, S. Yahara, Nat. Prod. Res. 30 (2016) 15771584.

  • [27]

    K.H. Posey , C.E. Schreck, Mosquito News 41 (1981) 566568.

  • [28]

    N. Tabanca , U.R. Bernier, N.M. Agramonte, M. Tsikolia, J.R. Bloomquist, Curr. Org. Chem. 20 (2016) 26902702.

  • [29]

    N.D. Epsky , J. Niogret, Nat. Volatiles Essent. Oil (in press).

  • [30]

    H. Noorizadeh , A. Farmany, M. Noorizadeh, Quím. Nova 34 (2011) 13981404.

  • [31]

    J.B. Boti , A. Bighelli, C. Cavaleiro, L. Salgueiro, J. Casanova, Flavour Fragr. J. 21 (2006) 268273.

  • [32]

    A. Orav (ed.), Identification of Terpenes by Gas Chromatography–Mass Spectrometry, CRC Press, Boca Raton, FL, 2001.

  • [33]

    C.M. Bignell , P.J. Dunlop, J.J. Brophy, Flav. Fragr. J. 13 (1998) 131139.

  • [34]

    J. Palá-Paúl , J. Brophy, R. Goldsack, B. Fontaniella, Biochem. Syst. Ecol. 32 (2004) 5562.

  • [35]

    A. Maggio , S. Rosselli, M. Bruno, V. Spadaro, F.M. Raimondo, F. Senatore, Molecules 17 (2012) 1023210241.

  • [36]

    A.-H. Al-Ja’fari , R. Vila, B. Freixa, F. Tomi, J. Casanova, J. Costa, S. Cañigueral, Phytochemistry 72 (2011) 14061413.

  • [37]

    H. Noorizadeh , A. Farmany, J. Chinese Chem. Soc. 57 (2010) 12681277.

  • [38]

    J.F. Cavalli , F. Tomi, A.F. Bernardini, J. Casanova, Flavour Frag. J. 18 (2003) 532538.

  • [39]

    I. Cheraif , H.B. Jannet, M. Hammami, M.L. Khouja, Z. Mighri, Biochem. Syst. Ecol. 35 (2007) 813820.

  • [40]

    J.J. Brophy , R.J. Goldsack, A. Punruckvong, A.R. Bean, P.I. Forster, B.J. Lepschi, J.C. Doran, A.C. Rozefelds, Flavour Fragr. J. 15 (2000) 342351.

    • Search Google Scholar
    • Export Citation
  • [41]

    D.G. Crosby , N. Aharonson, Tetrahedron 23 (1967) 465472.

  • [42]

    B. Tao , J.C. Ruble, D.A. Hoic, G.C. Fu, J. Am. Chem. Soc. 121 (1999) 50915092.

  • [43]

    https://www.epa.gov/minimum-risk-pesticides/conditions-minimum-risk-pesticides (assessed on September 1, 2017).

  • [44]

    P.E. Kendra , W.S. Montgomery, J. Niogret, E.Q. Schnell, M.A. Deyrup, N.E. Epsky, J. Pest Sci. 87 (2014) 681689.

  • [45]

    P.E. Kendra , D. Owens, W.S. Montgomery, T.I. Narvaez, G.R. Bauchan, E.Q. Schnell, N. Tabanca, D. Carillo, PLos One 12 (2017) e0179416.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 3 5
Jul 2020 10 4 5
Aug 2020 7 0 0
Sep 2020 15 1 0
Oct 2020 5 0 0
Nov 2020 4 0 0
Dec 2020 0 0 0